

NE

S

Suomi-NPP/JP

- Develop and maintain the science to convert raw satellite observations into products for NOAA's mission and to maintain quality and consistency through the satellite life cycle
- Support research and conduct development to improve: satellite data assimilation, products, services; development timelines and cost; to enable NOAA mission skill improvement objectives
- Define and support international partnerships and standards for instruments, products, services, and calibration / validation to improve NOAA access to use ready observations

The raw data collected from NOAA Satellites is not usable without the functions STAR performs

STAR Work across Products and Services Life Cycle

- Develop data products, support instrument development
- Sensor calibration / data product validation, both pre-launch and post-launch (intensive)
- Product maintenance and sustainment, anomalies, improvements

• STAR supports users

- Experimental products and services
- Test beds and risk reduction
- Training
- Data assimilation including Joint Center for Satellite Data Assimilation

• STAR prepares for the future

- Science requirements for future satellite architecture, formulates
 Data Product developments
- Research and technology development for improved cal / val, algorithms, applications
- Advanced tools and computational infrastructure

STAR in the Value Chain

STAR provides the satellite remote sensing science and software basis for transforming satellite observations into data / information products for the processing chain from

STAR bridges between instrument providers and NESDIS users

NOAA

STAR Organization

NOAA's Mission: Science, Service and Stewardship

- 1. To understand and predict changes in climate, weather, oceans and coasts;
- 2. To share that knowledge and information with others; and
- 3. To conserve and manage coastal and marine ecosystems and resources.

四日

12

End-to-end System Evolution to Support the integrated observing system

DATA SOURCES

Trends - A Pivotal Time for Earth Observations

- Science and models Moving to increased earth system understanding, coupling, higher resolution
- Operational forecasters Need integrated information products tied to mission needs
- Big Earth Data processing, distribution, archive, easy access, security all challenges
- Technologies AI, deep learning, IOT, cloud, High Perf. Computing advances
- Business models commercial data, Citizen Science old is new
- New technologies in satellites and launch

Meeting the Challenges:

Partnerships and Transformation

- Partnerships STAR is in the front line of partnership and coordination essential to make effective us of the global satellite observing system
 - Operational and spaceflight agencies around the world
 - CGMS, CEOS, GEO, WMO committees
 - US Agencies including NASA, NAVY, USAF, USGS
 - NOAA Line Offices

• Transformation - for how we do algorithms, data & information products

- Business model move from mission focus only to enterprise (Level 2 and above)
 - Source-agnostic fit for purpose, application targeted
 - Enterprise algorithm and product portfolio
- Technology move to higher information content
 - Integrated, blended, fused data products
 - Advanced assimilation, calibration / validation
- Expand and couple
 - Advance satellite oceanography and hydrology
 - Enable coupling of oceans, atmosphere, land, space to meet NOAA Skill Improvement

Partnership Example –

International cooperation Serves Critical Needs

Satellite Ocean Wind Example

Improve:

- Marine weather forecast, warnings and analyses (hurricanes, winter storms and everyday weather)
- Ship safety and efficiency
- Contribution to Safety of Life at Sea (SOLAS)
- Numerical weather model forecast guidance and validation
- Understanding of ocean atmosphere coupling

Transformation Example: Higher Information Content

Operational applications require "Big Data" to be automatically transformed into information and insight for decision making

VOLCAT Volcanic Eruption Detected!

00101001 001010010000100001 A1001001001010010010101010101010 101010001000101010100101 10101010101010

Basic Information United Stat Country/Countries Volcanic Subregion(s Veutian Island AAC Region(s) of Nea Anchorage lasic Growth 2016-12-22 01:30:33U an Object Date/Tim diative Center (Lat, Lon 54.050", -167.910" loaoslof (3.30 km Frend in IR Brightness 19.30 °C num Height (AMSL) 1.10 km : 36417 ft h Percentile Height (AMS) 10.00 km : 32808 ft 70 km : 20542 6

ProbSevere **Severe Weather Likely**

Global Constellation of Earth Observing Environmental Satellites

- NESDIS reorganizing from mission centric to user focused / enterprise optimized approach to products and services
- NESDIS Evaluating future satellite observing system architecture for NOAA to define what follows JPSS and GOES R

NOAA

