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Introduction

* River Systems, the veins of the Earth
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Introduction

* River flow information is essential for many
important uses across broad rang of scales.

- Global water balances
- Engineering design

- Flood forecasting
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- Reservoir operation
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- Water supply
- Environmental management

- Recreation
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Introduction

Natural streams are characterized by changes in cross-
section geometry, bed-slope, and geophysical properties
(bed roughness, hydraulic slope, etc.) along their reaches.

LONGITUDINAL, CROSS-SECTIONAL and PLAN VIEWS
of MAJOR STREAM TYPES

.. NS

£
223 %
== 4 a
EJE 10\0 8
8(]) o o L__,g ________ D DA E F

i (T - T N,
<2% <4 <0.5 % <29 T <2% =
o 2 4;/0‘

o S e | e

CROSS
SECTION

PLAN VIEW

“ees | Aa+| A B C D| DA E F i3

Figure is adopted from Dave Rosgen, (1996), Applied River Morphology, page 4-4.




Introduction

Variations in the shape and size of the alluvial channel bed
geometry result from several interacting features of the river
system including effect of different flow regimes, bed-slope,
sediment load, etc.

oo g T
.25 Flat Feet / Mile Steep: 500
<+— STREAM SLOPE

millimeters Fine .01

SEDIMENT SIZE —p

\
\ @

7 \
S0 / \ «
- DEGRADATION 0 AGGRADATION o

CU
NY

( Sediment LOAD ) x ( Sediment SIZE ) C><<  (Stream SLOPE ) x ( Stream DISCHARGE )

The City College
of New York

Figure is adopted from Dave Rosgen, (1996), Applied River Morphology, page 2-2.



Introduction

Different River Morphology and Natural Riverbed Geometry
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Introduction

Different River Morphology and Natural Riverbed Geometry
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Figure are adopted from Dave Rosgen, (1996), Applied River Morphology, page 5-151




Introduction

e Vital need for fresh
water in the future

* Growing of Population
and Middle Class putting @ @ @
more stress on water

bOd ieS and fl"eSh water Yesterday Today Tomorrow Day after

http://www.capsweb.org/blog/

tomorrow
demands

* Need for more accurate,
timely and accessible
streamflow data
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e Rivers are essential
resources for tracking
amount of fresh water in |
hydrological cycle.
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River Network Models — SimpleTools

* River network models developed for spatially and
temporally analyzing and estimating flow discharge over
large domains, that can be exported to the other
hydrological models.

* Simplification of either governing flow relations and
physical boundary conditions of river extent, for
example, riverbed geometry and geo-morphological
features of river channels will turn river network
models into feasible tools to be incorporated in
regional and even global-scale fresh-water analysis.
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* Two sets of river network model platform have been

created : 1) Gridded River Network
2) Vectored River Network
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River Network Models — Types

. Vectored River Network
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* Gridded River Network
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River Network Models — Structure

General Flow Equ. Actual Riverbed
(Saint-Venant equ.) Geometry
Simplified Flow Uniform Regular
Routing Schemes Geometries
- Muskingum-Cunge - Rectangle
- Kinematic Routing - Trapezoid
ﬁg - Cascading Resv. - 2nd-grder parabola
50 - etc.
[é 2 - Two basic structural components are:
s 5 1) simplified flow routing schemes
1}3-* E 2) regular-shaped bed-geometries
3 Either of these components can be improved!




Improving Riverbed Geometry

* Simplifying the river bed geometries could reduce the
burden of assembling the required data.

* Implementing less detailed flow routing procedures
could lower the computational burden.
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* Developing idealized riverbed geometries
based on streamflow information, and
employing them in flow routing schemes and
river network models.
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|ldealized Flow Conditions

* Average conditions over longer river reaches are more
uniform and predictable based on flow and topography
consideration.

tl_ﬂ * Average flow conditions expressed as power-law “at-a-
% station” hydraulic relationships between key channel
O components, (i.e. water depth, top-width, flow velocity, flow
g area against discharge) have been studied since 60°s.
O discharge ( Q)
< mean depth ( Y )
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Preliminary Experiment

|dealized geometries can be calculated and assigned
alongside the river channel
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Ground-Based
Measurement

Space-Based
Measurement

River Flow
Information Records

At-A-Station Relations
&
Idealized Geometry
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Ground-Based Flow Measurement

Establishing robust relationships for riverbed geometry and
its hydraulic properties will require analysis of river surveyed
data for wide range of various sizes with different flow
regimes over diverse landscapes and regional domains.

* There are several sources, e.g. national/private agencies that
provide in-situ streamflow measurement
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Figures are adopted from Dave Rosgen, (1996), Applied River Morphology. page 5-24




Ground-Based Flow Measurement

4( Daily Data ) CSurveyed DataD

H: Stage-height
Q: Discharge

Y : maximum
I Hy, offset water depth in a
river cross-section
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H, stage-height 1

- Provides daily Mean, Maximum, and Minimum time-series of
®—1 stage-height and corresponding discharge values.

- They will be used as basic limiting tools for selecting surveyed
data in following studies.
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Space-Based Flow Measurement

I’ APP|iC3ti°n of remote SenSing Digital rendering of the SWOT satellite.
techniques for data acquisition
over river extents is becoming as
an alternative surveying approach
along with field measurements.

» Remote sensing surveys can
provide full range of spatial and
temporal variation in  river
systems  at  regional and
continental  scales  captured
through various satellite-based, or
airborne products

=
1)
LLI
as
a
3
O
<

=CD
<

The City College
of New York

http://www.san-lo.com/photogrammetry.html

http://www.san-lo.com/photogrammetry.html/




Space-Based Flow Measurement

* Since 1990, studies have suggested that remotely sensed data captured
from rivers could be used to directly estimate the discharge, geometrical
and physical components of river extent at a specific location, typically
where ground-based data is difficult to obtain.

Clear Satellite Image — ' e Cloudy Satellite Image —
Landsat 8 e o Landsat 8
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Space-Based Flow Measurement
» Gaging Reach vs. Gaging Stations

Temporal and spatial variation of the size and shape of alluvial channel
alongside the reach would restrict the gaging station to geometrically
represent just the immediate vicinity.
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Space-Based Flow Measurement
» Gaging Reach vs. Gaging Stations

Advantages of the remote sensing, or specifically, satellite optical
imagery over other river surveying techniques is the development and
utilization of gaging reaches rather than gaging stations. GIVENS
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Preliminary Experiment in Remote Sensing

Single River Reach: Savannah River at Burtons Ferry Bridge
- Total length: 38 mile (~60 km). |
- Landsat 4-5 TM, and 8-OLI/TIRS
Band 5 (1.55 - 1.75 pm) '

y

. * USGS/NWIS Daily Data :
- Site No. 02197500
- Latitude: 32°5620" NAD27
- Longitude: 81°30°10" NAD27
- Drainage area: 8,650 sq. miles
- Gage datum 52.42 feet

above NGVD29
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FigureS (a) Satellite imagery over USGS station at Burtons Ferry bridge on Savannah river. (b)
Band 5 of Landsat on May 8", 2014. (c) River flow-path line produced by NHDPIus (d) classification
of river extent from land made in ArcMap/ArcGIS (e) Gaging reaches, different percentile of total
reach segment.




reliminary Experiment in Remote Sensing
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Remote Sensing of Rivers, A Practical Approach???

No. of Rivers e " Total length (km)  Width (m) Area (km?)
28 550 000 1.6 45 660 000 0.8 36 500
- 6 000 000 3.7 22 061 000 1.8 39 200
E 1 260 000 8.5 10 660 100 3.7 39 600
o 264 000 19.5 5151 100 8.3 42 500
o 55 500 44.8 2 489 000 29.3 72 800
g 11 700 103.2 1202 700 73.3 88 100
o 2450 237.4 581200 131.5 76 400
2 515 546.2 280 800 264.5 74 300
CU 110 1256.7 135 700 608.5 82 600
o NY 23 2891.7 65 600 088.5 64 900
%‘ ” 5 6653.8 31 700 803.0 25 400
O S 1 6437.0 6440 3079.0 19 800
g E 36,144,304 18,204.1 88,325,340 5992.2 662,100

1% B Adopted from Downing et. al., 2010
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