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Introduction & Objectives w ': -
* Satellite reflectivity is known to be influenced by soil moisture 10N
*  Current global SM products (SMAP) have a temporal frequency of 2-3 days
* CYGNSS collects data at low cost and higher frequency

[1] Collected CYGNSS reflectivity, SMAP soil moisture (SM), and ancillary data
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[2] Developed a machine learning model to retrieve CYGNSS soil moisture S —re——— — — e — o
[3] Evaluated CYGNSS SM retrievals using reference data SMAP NEssOTy

[4] Validated CYGNSS SM retrievals with in-situ observations Monthly example of the 25 km CYGNSS reflectivity for January 2019

CYGNSS SM Prcdictigns [Jan. 2019]
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Machine Learning Framework
*  XGBoost ML model has better behavior than other popular models
* Input: CYGNSS reflectivity and signal-to-noise ratio, elevation, clay & sand
ratios, soil texture, VIIRS land cover, MODIS NDVI, month
* Reference: SMAP SM retrievals
e Cluster data into 4 geographical quadrants, train 1 model on each
* Train period: 2019 to 2022
* Test period: Jan. 2023 to Sep. 2023
e  Metrics: RMSE, ubRMSE, MAE, R

Training [2019 - 2023] Testing [Jan. 2023 - Sep. 2023]
RMSE ubRMSE MAE R RMSE ubRMSE MAE R

0.0502 0.0502 0.0343 0.8962 0.0588 0.0586 0.0404 0.8587

Soil Moisture
Average performance metrics of each cluster model in the train & test periods between CYGNSS and Spatial maps of CYGNSS SM predictions and SMAP intra-month mean SM (m3/m3) for

SMAP SM January 2019
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Evaluation against SMAP SM

Correlatlun Coefficient Between CY(‘NSS and SMAP [lrammg]

ubRMSE Between CYGNSS and SMAP [training]
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ubRMSE Between CYGNSS and GMAP [testing] Currelallon Coefficient Between CYGNSS and SMAP [leslmg]
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With respect to SMAP SM, ubRMSE (m3/m?3) and Correlation Coefficient (R) for CYGNSS SM over train & test periods

Results & Future Work
*  CYGNSS SM overall performs well with retrieving and forecasting SM
* Retrievals are less accurate in forest regions (e.g. Amazon rainforest)
*  When validated with in-situ, CYGNSS is similar to SMAP but has low temporal variation
* CYGNSS SM captures general trends but day-to-day predictions are less accurate

* Improvements for spatial & temporal performance: clustering technique, spatial resolution,

ancillary data, increasing training period data
* Applications: weather forecasting, drought monitoring, irrigation strategy
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Validation with 88 ISMN in-situ sites

ubRMSE Between ISMN and CYGNSS
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Unbiased Root Mean Square Error

With respect to in-situ SM, ubRMSE (m3/m3) for CYGNSS SM predictions

S7E 0.0959 0.0716 0.3432 0.0450
A2 0.0996 0.0741 0.4500 0.0705

SCAN-Mammoth_Cave: ubRMSE = 0.0548 (CYGNSS) / 0.0562 (SMAFP)
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Soil Moisture
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SM (m3/m?3) time series from in-situ, CYGNSS, and SMAP at
SCAN-Mammoth_Cave (Mammoth Cave, KY) from 2019 to 2022
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