

UV-Visible Light Absorbance Analysis of Water Quality and PACE OCI Hyperspectral Data Analysis and Classification

Annika Means, Oliver Wang Mentors: Changyong Cao, Xi Shao, Sirish Uprety, Chun-Kai Hsu

Objectives

- Assess water quality using UV-Vis Absorbance Spectroscopy
- Analyze absorbance data to determine presence of constituents:
 - CDOM, phycocyanin, phycoerythrin, salinity, temperature, turbidity, and hazardous water contaminants
- Explore how water quality differs across regions
- PACE OCI data analysis and classification

Motivation

- Water contaminants are detrimental to human and ecosystem health
- Contaminated water may appear clean, and its consumption can lead to waterborne disease outbreaks and illness
- Cost-effective methods for water quality detection

Absorbance: Amount of light absorbed; describes sample composition.

Beer-Lambert Law: $A = \varepsilon c l$

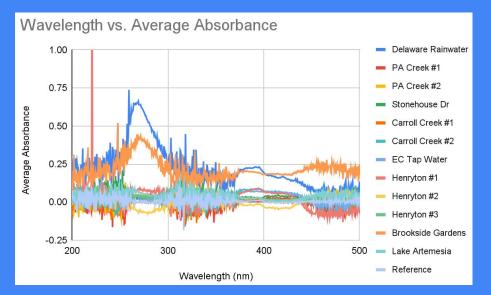
- A = absorbance ε = molar extinction coefficient c = concentration
 - *I* = length of the light path

Methods

- Collected water samples from rain, streams, creeks, taps, ponds, and lakes
- Analyzed absorbance of samples using spectrometer

Water Collection

Spectroscopy Experiment Setup A O O O O O O O O O O O Laptop H & S647 as a. **Avantes** Quartz CompactLine UV-C cuvette UV-Vis Optical ED light spectrometer fiber source **UV-Vis optical** fiber Power bank

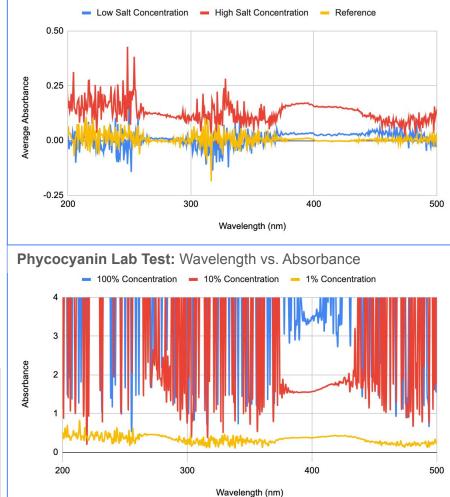

3D printed cuvette and light source holder

Box Interior:

Brookside Gardens

Stonehouse Drive

Results


All fieldwork samples from 200 nm to 500 nm

Parameters

Relative concentration of components, based on absorbance at specific wavelengths:

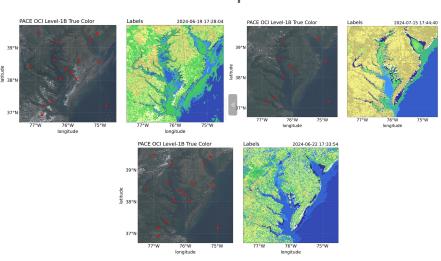
- Very High: ≥ 0.500
- High: 0.150 0.499
- Moderately High: 0.100 0.150
- Moderate: 0.050 0.099
- Moderately Low: 0.025 -0.049
- Low: 0.000 0.024

Wavelength vs. Average Absorbance

Wavelengths of Peak Absorbance for Constituents of Interest: from Literature Review

Component	Peak Absorbance Wavelength (nm)	Actual Wavelength Assessed (nm)	Component	Peak Absorbance Wavelength (nm)	Actual Wavelength Assessed (nm)
CDOM	254	253.9	Chlorophyll a (412		
C-PC	620	619.77	nm)	412	412.16
R-PC (533 nm)	533	532.84	Chlorophyll a (663 nm)	663	662.98
R-PC (544 nm)	544	544.19	Nitrate	220	219.74
Allophycocyanin	652	651.75	Nitrite	354	354.14
PE545	545	544.79	Lead	538.52	538.82
B-PE	545	544.79	Lead (UV region)	211	211.19
R-PE	565	565.07	Copper	619.89999	619.77
NaCl	197	197.13	Copper (UV region)	221	220.96
NaOH	201	200.8	Arsenic	617	616.8

Sources: (Eijckelhoff & Dekker, 1997; Eurogentec, n.d.; Lace et al., 2019; *Product Data Sheet: C-Phycocyanin*, n.d.; *Refractive Index and Extinction Coefficient of Materials*, n.d.; Shi et al., 2022; Stadnichuk et al., 2020; *SureLight® Allophycocyanin (APC)*, n.d.; *SureLight® B-Phycoerythrin (B-PE)*, n.d.; Tan et al., 2014; Tong et al., 2020; Yeshno et al., 2019; Zagurskaya-Sharaevskaya & Povar, 2015; Zuo & Deng, 1998)

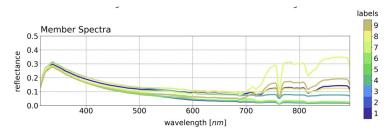

Results Analysis

Sample	Appearance	Possibly Very High Concentration	Possibly High Concentration
Delaware Rain	Clear	N/A	Nitrate, CDOM, copper, C-phycocyanin, allophycocyanin, lead (UV), chlorophyll a (412 nm)
Stonehouse Stream	Clear	Chlorophyll a (663 nm)	N/A
Henryton Stream (Cuvette #1)	Mostly clear, some small brown particles	Nitrate, chlorophyll a (663 nm)	Copper (UV)
Brookside Pond	Yellow green, visible particles (grass, dirt)	N/A	Nitrate, CDOM, nitrite, chlorophyll a (412 nm), phycoerythrin 545, B-phycoerythrin, allophycocyanin, lead (UV)

Conclusions

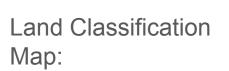
- Delaware Rainwater and Brookside Gardens Pond were the most contaminated samples
- UV-Vis absorbance spectroscopy is a cost-effective method for assessing general water quality
- Appearance does not always correspond to water quality
- Absorbance cannot explain all aspects of a sample
 - Undissolved particles
 - Detect constituents that are not actually present
 - Noise
- Absorbance should be used in conjunction with reflectance, transmittance, and other measurement techniques for more accurate water quality analysis

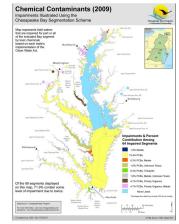
PACE OCI Hyperspectral Imaging and classification over the Chesapeake Bay area

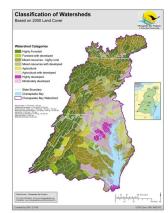

Classified Maps:

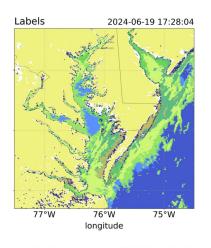
Spectra extracted from selected locations:

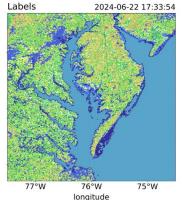
Procedure:


Create true-color plots Extract spectral signatures from manually selected locations


Run the spectral signatures through the SAM (Spectral Angle Mapper) Classification method to generate classified maps from hyperspectral data




Comparison with Other Classifications of Chesapeake Bay Area


Water Classification Map:

