



# Comparison of ATMS Striping Noise between NOAA-20 and S-NPP and Noise Impact on Warm Core Retrieval of Typhoon Jelawat (2018)

Xiaoxu Tian and Xiaolei Zou

Earth System Science Interdisciplinary Center

University of Maryland

2019 CISESS November 12, 2019

# Outline

- Characteristic orbital difference between NOAA-20 and S-NPP
- Comparisons of the detected striping noise in NOAA-20 and S-NPP ATMS
- ATMS-retrieved 3D structural evolution of Typhoon Jelawat (2018)
- Summary and conclusions

# Characteristic Orbital Difference between NOAA-20 and S-NPP

NOAA-20

S-NPP



04:50 04:40 04:30 04:20 04:10 03:50 03:40 03:30 03:20 03:10 (UTC time)

At 0400 UTC July 8, 2018 NOAA-20 is at the North Pole S-NPP is at the South Pole The two neighboring swaths of NOAA-20 and S-NPP has a considerable overlapping area.

NOAA-20 is ahead of S-NPP by a half orbit.

S-NPP only

Overlapped

NOAA-20 only

#### **NOAA-20 and S-NPP ATMS Instrument Features**



- The NEDTs are calculated with the Allan deviation formula reported in Tian et al (2015).
- The instrument noise of the ATMS on NOAA-20 is lower than that of the ATMS onboard S-NPP

#### **Striping Noise Mitigation Algorithm**

1. Form ATMS data matrix

$$\mathbf{A} = \begin{pmatrix} T_b^{obs}(1,1) & \cdots & T_b^{obs}(1,96) \\ \vdots & \ddots & \vdots \\ T_b^{obs}(M,1) & \cdots & T_b^{obs}(M,96) \end{pmatrix}$$

2. Solve for eigenvalues/eigenvectors of the covariance matrix

$$\mathbf{A}\mathbf{A}^T \vec{e}_i = \lambda \vec{e}_i$$

3. Mapping ATMS measurements in PC modes

$$\mathbf{A} = \sum_{i=1}^{96} \mathbf{P}_i = \sum_{i=1}^{96} \vec{e}_i \vec{u}_i$$
, where  $\vec{u}_i = \vec{e}_i \mathbf{A}$ 

4. Perform EEMD on the first three PC coefficients

$$\mathbf{A}^{\text{destriped}} = \sum_{i=1}^{3} \mathbf{P}_{i}^{\text{destriped}} + \sum_{i=4}^{96} \mathbf{P}_{i}$$

#### **Striping Noise in NOAA-20 and S-NPP ATMS**



- The striping patterns can be seen in raw O-B (left) from both satellites
- Results for S-NPP
   ATMS slightly more
   obvious than in
   NOAA-20
- After mitigation, the striping patterns
  (middle) in
  observations are
  effectively removed

#### **Striping Noise at a Global Scale**



The magnitudes of striping noise detected from S-NPP ATMS are consistently greater than NOAA-20 ATMS.

## Hurricane Warm Core Retrievals with Microwave Temperature Sounders

The atmospheric temperature at a specific level T(p) is expressed as a weighted linear combination of brightness temperature observations at different channels (Tian and Zou, 2018)

$$T_{\theta}(p) = C_{0}(p,\theta) + \sum_{i=i_{1,p}}^{i_{2,p}} Ci(p,\theta) T_{b,\theta}^{obs}(i)$$

- $T_{\theta}(p)$  atmospheric temperatures  $C_i(p,\theta)$  – regression coefficients trained with ECMWF temperatures  $T_{b,\theta}^{obs}(i)$  – ATMS brightness temperatures at channels 5-15  $\theta$  – local zenith angle denoting scan positions
- Tian, X. and X. Zou, 2016: ATMS and AMSU-A derived warm core structures using a modified retrieval algorithm. *J. Geophy. Res.*, **121**, 12,630-12,646.
- Tian, X. and X. Zou, 2018: Polar-orbiting satellite microwave radiometers capturing size and intensity changes of Hurricane Irma and Maria (2017). J. Atmos. Sci., 75, 2509-2522.
- Zou, X. and X. Tian, 2018: Hurricane warm core retrievals from AMSU-A and remapped ATMS measurements with rain contamination eliminated. *J. Geophy. Res.*, **123**, 10,815-10,829.

### **Impact of Striping Noise On Temperature Retrievals**



#### Warm Core at 200 hPa



The rapid weakening process during the 50 min from 1610 UTC to 1701 UTC was captured by the back-to-back orbital setup of NOAA-20 and S-NPP

## **Typhoon Warm Core Evolutions Captured by NOAA-20 and S-NPP**



At 0000 UTC March • 29, 2018, Typhoon Jelawat rapidly intensified from a Cat. 1 typhoon to a Cat 4 typhoon

5

- The storm quickly -3 • weakened to Category 1 the same day due to strong vertical wind shear in its vicinity
- These rapid changes were well captured by the NOAA-20 and S-NPP, thanks to the 50--3 min apart orbital configuration

# **Typhoon Evolutions Captured by Himawari-8**



Brightness temperatures at 10.4  $\mu$ m from the AHI onboard Himawari-8 with wind shear values at the lower left corner.

#### **Summary and Future Work**

- The NOAA-20 satellite shares nearly the same orbit as the S-NPP satellite, flying 50 min ahead of it
- Similar with the NEDTs, the striping noise detected in NOAA-20 is also smaller in magnitudes than those in S-NPP ATMS
- Retrieved temperatures can be affected by nearly 1 K if striping noise is not mitigated beforehand
- Rapid changes may be well captured by the NOAA-20and S-NPP ATMS-retrieved atmospheric temperature fields, thanks to the 50-min back-to-back orbit setup

# Reference

Zou, X., and X. Tian, 2019: Comparison of ATMS Striping Noise Between NOAA-20 and S-NPP and Noise Impact on Warm Core Retrieval of Typhoon Jelawat (2018). *IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.*, **12(7)**, 2504-2512.