Performance of fast radiative transfer models in the microwave spectrum

Isaac Moradi¹, Mitch Goldberg¹, Ralph Ferraro¹, Mnafred Bratch², Stefan Buehler², Roger Saunders³, Ninghai Sun¹ 1- NOAA, 2-University of Hamburg, 3- UK MetOffice

CISESS Science Team Meeting, University of Maryland

November 12, 2019

- Comparing CRTM and RTTOV using similar atmospheric and surface dataset (Era-5)
- Comparing CRTM and RTTOV vs. observations from ATMS onboard NPP and N20
- Comparing CRTM and RTTOV vs. observations from GPM-GMI
- Performance of fast models (CRTM & RTTOV) vs. a LBL model
- Using GRUAN observations to (may be) validate satellite observations

Collocation Technique

Era-5 Resolution: 0.3 deg and 3 hour Collocations criteria: 30 km and 60 minutes

MW Spectrum and ATMS Channels

Chan 1: 23.8 GHz, Chan 10: 55.5, Chan 15: 57.290344 $\pm 0.3222 \pm 0.0045$ Chan 22: 183.31 ± 1

ATMS-N20 Biases vs. different RTMs

ATMS-NPP Biases vs. different RTMs

GMI-GPM Biases vs. different RTMs

ATMS-N20 RMSEs for different RTMs

Difference between RTMs for ATMS-N20

Top Left: Channel 1, Top Right: Channel 12, Bottom Left: Channel 16, Bottom Right: Channel 22

Isaac Moradi (CISESS Science Team Meeting Radiative Transfer Models Intercomparison

Impact of WV spectroscopy

Impact of SRF

Isaac Moradi (CISESS Science Team Meeting Radiative Transfer Models Intercomparison

Impact of emissivity

FOV Impact

Top: Channel 1, Bottom: Channel 16

Double difference: [RT – NPP] – [RT – N20]

Double difference: [RT – NPP] – [RT – N20]

Double difference: [RT – NPP] – [RT – N20]

STATISTICS FOR RADIANCES FROM NPP/ATMS CHANNEL =20, ALL DATA [TIME STEP = 6 HOURS] Area: lon_w= 0.0, lon_e= 360.0, lat_s= -90.0, lat_n= 90.0 (over All_surfaces) EXP = 0001 (LAST TIME WINDOW: 2019111103)

STATISTICS FOR RADIANCES FROM NOAA-20/ATMS CHANNEL =20, ALL DATA [TIME STEP = 6 HOURS] Area: lon_w= 0.0, lon_e= 360.0, lat_s= -90.0, lat_n= 90.0 (over All_surfaces) EXP = 0001 (LAST TIME WINDOW: 2019111103)

STATISTICS FOR RADIANCES FROM NOAA-20/ATMS CHANNEL =22, ALL DATA [TIME STEP = 6 HOURS] Area: lon_w= 0.0, lon_e= 360.0, lat_s= -90.0, lat_n= 90.0 (over All_surfaces) EXP = 0001 (LAST TIME WINDOW: 2019111103)

STATISTICS FOR RADIANCES FROM NPP/ATMS CHANNEL =10, ALL DATA [TIME STEP = 6 HOURS] Area: lon_w= 0.0, lon_e= 360.0, lat_s= -90.0, lat_n= 90.0 (over All_surfaces) EXP = 0001 (LAST TIME WINDOW: 2019111103)

Conclusions

- CRTM version 2.3 is slightly improved compared to V2.1 for the window channels but the sounding channels remain the same given no change in transmittance coefficients
- The difference between RTTOV and CRTM simulations for most ATMS temperature sounding channels is very small, but the differences are larger for the water vapor and window channels
- ATMS N20 measurements better agree with Era-5 reanalysis before reprocessing ATMS/NPP observations
- The LBL simulations using different WV spectroscopies show a large impact of spectroscopy on both WV and Window channels
- ATMS/NPP observations, especially for WV channels, are greatly improved after recent reprocessing (confirmed both in this study and also from ECMWF omf statistics)

Thank you for your attention!