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NASA Earth Observing System（EOS）



satellite images + high-level products

EOS is the first comprehensive mission 
for monitoring the  Earth system

EOS started to convert satellite 
observations to high-level products

Earth System Science Decision support systems and 
much wider applications
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NASA’s approach for generating the EOS 

high-level products

Each sensor has a Science Team

Each PI is responsible for one product algorithm development

PI passes the science code to the central facility for production
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Generic issues of the EOS framework

♣ Same land product generated from different EOS 
instruments without using the multiple data sources 
effectively;

♣ Multiple products from the same sensor by different PIs 
using different algorithms indepedantly

♣ Looping requirements and conflicting assumptions;
 Aerosol retrieval <-> Atmospheric correction <-> surface BRDF

♣ Only one algorithm for one product;
♣ Temporal signatures not used effectively;
♣ Products often spatiotemporally discontinuous and 

physically inconsistent

The EOS framework has been widely accepted by 
various space agencies. However, there are many issues:



Two：
Develop a NEW inversion 
framework: based on data 
assimilation

Two solutions

One：
Continue to improve the existing 
framework

This talk



Why is DA a better framework? 
Regularization methods

• Challenges: ill-posed inversion problem 
 the number of bands of each pixel always smaller than the number of 

unknowns 
 spectral signatures highly correlated

• Solutions
– A priori knowledge 

• climatology
– Spatial constraints
– Temporal constraints
– Multi-sources data

Data 
Assimilation



Liang, S., J. Townshend and R. 
Dickinson,  “Improving Land Surface 
Products from Multiple EOS Sensors by 
Developing a Prototype Data 
Assimilation System”, National 
Aeronautics and Space Administration
(NASA), 4/2004 – 3/2008
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The new inversion framework is based on data assimilation, characterized by multiple data 
sources, multiple algorithms, and multiple products 

Data

Model

A priori 
knowledge              
& 
constraints

Products
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The new generation of the inversion method is based on data assimilation, characterized 

by multiple data sources, multiple algorithms, and multiple products 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data Assimilation 
 

Sensor 1 time 

series observations 

Sensor 3 time 

series observations 

 
 

… 

Sensor 2 time 

series observations 

 
 

Indirect Estimation Methods 

 

Direct inversion 
 LAI 
 Leaf angle distribution 
 Leaf reflectance 
 Leaf transmittance 
 FVC 
 AOD 
 LST 
 … 

  

Indirect inversion 
 Albedo 
 FPAR 
 Emissivity 
 Insolation 
 Long-wave radiation 
 Net radiation 
 … 

  

Priori knowledge 

 Land surface products 
 Statistical constraint 
 Intrinsic Physical. 

 … 

Radiative Transfer Modeling 

 

Dynamic Model 

 

LAI Retrieval Methods Ensemble 

 
FPAR Retrieval Methods Ensemble 

 

 

 

 

LST Retrieval Methods Ensemble 

 

 

… 
ABD Retrieval Methods Ensemble 

 

 

 

 






























Data Assimilation








Dynamic Model








Radiative Transfer Modeling








Direct inversion


LAI


Leaf angle distribution


Leaf reflectance


Leaf transmittance


FVC


AOD


LST


…








Sensor 1 time series observations





Sensor 2 time series observations











Priori knowledge





Land surface products


Statistical constraint


Intrinsic Physical.


…





LAI Retrieval Methods Ensemble








FPAR Retrieval Methods Ensemble

















LST Retrieval Methods Ensemble

















Indirect inversion


Albedo


FPAR


Emissivity


Insolation


Long-wave radiation


Net radiation


…








…





ABD Retrieval Methods Ensemble

















…





Sensor 3 time series observations











Indirect Estimation Methods













Radiative transfer modeling



梁顺林
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Empirical dynamic model





Generating products: direct + indirect

Direct: inversion
(LAI, LST,soil reflectance, leaf optics…)

Indirect: model calculations
(narrowband albedos, fAPAR, broadband albedos, 

incident PAR/insolation)

Category variables
(land cover, PFT)

DA

Other 
information
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First Guess First GuessKnowledge 
Database

Analysis (inversion)

Prediction Prediction

Analysis (inversion)

Observations Observations

Product generation (time)

Real-time inversion
Reanalysis



Recent Publications
• Case 1: MODIS surface reflectance -> LAI, FAPAR and albedo

– Xiao, Z.Q., Liang, S., Wang, J.D., Xie, D.H., Song, J.L., & Fensholt, R. (2015). 
A Framework for Consistent Estimation of Leaf Area Index, Fraction of 
Absorbed Photosynthetically Active Radiation, and Surface Albedo from 
MODIS Time-Series Data. IEEE Transactions on Geoscience and Remote 
Sensing, 53, 3178-3197

• Case 2: MODIS+VEGETATION+MISR surface reflectance ->LAI, 
FAPAR, and albedo
– Ma, H., Liu, Q., Liang, S., & Xiao, Z. (2017). Simultaneous Estimation of Leaf 

Area Index, Fraction of Absorbed Photosynthetically Active Radiation and 
Surface Albedo from multiple-Satellite Data. IEEE Transactions on Geoscience 
and Remote Sensing, 55, 4334 - 4354

• Case 3: MODIS top-of-atmosphere (TOA) (clear-sky) reflectance-
>LAI, FAPAR, albedo, PAR/APAR
– Shi, H., Xiao, Z., Liang, S., & Zhang, X. (2016). Consistent estimation of 

multiple parameters from MODIS top of atmosphere reflectance data using a 
coupled soil-canopy-atmosphere radiative transfer model. Remote Sensing of 
Environment, 184, 40-57



Recent Publications – Cont.

• Case 4:MODIS TOA (all-sky) reflectance->LAI, FAPAR, albedo, 
PAR/APAR
– Shi, H., Xiao, Z., Liang, S., & Ma, H. (2017). A Method for Consistent 

Estimation of Multiple Land Surface Parameters From MODIS Top-of-
Atmosphere Time Series Data. IEEE Transactions on Geoscience and Remote 
Sensing, 55, doi:10.1109/TGRS.2017.2702609

• Case 5: MODIS surface reflectance + thermal TOA brightness 
temperature ->LST + …
– Ma, H., Liang, S., Xiao, Z., & Shi, H. (2017). Simultaneous inversion of 

multiple land surface parameters from MODIS optical–thermal observations. 
ISPRS Journal of Photogrammetry and Remote Sensing, 128, 240-254

• Case 6: VIIRS surface reflectance + thermal TOA brightness 
temperature ->LST + …
– Ma, H., Liang, S., Xiao, Z., & Wang, D. (2018). Simultaneous Estimation of 

Multiple Land Surface Parameters from VIIRS Optical-Thermal data. Ieee
Geoscience and Remote Sensing Letters, 15, 151-160



Case 4: Coupled surface + atmosphere





Goodwin Creek, 2002



Case 5: MODIS (visible-thermal)
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The inverted results are better than the existing 
satellite products at Bondville, 2005





Case 6: using VIIRS data















Concluding remarks
• The current inversion framework was developed in 1980s. It is 

necessary to explore the new generation of the inversion scheme
• We proposed a new inversion framework (LoVE-P) based on the 

data assimilation method
• Multiple case studies demonstrated that LoVE-P works very 

well
• Strengths of the LoVE-P

– Integration of various regularization methods effectively
– Estimation of a group of variables simultaneously
– Spatially and temporally continuous
– Physically consistent 
– Better or comparable accuracies
– Suitable for any satellite observations (single or multiple)
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