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® Background &
Objectives
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% Background

4+ SMAP lost the capability to directly generate high
resolution SM after the loss of L-band radar
4+ July 7, 2015

% Objectives

+  Which one or type of downscaling algorithms would
produce the most reliable high resolution soil moisture
product?

+ Can they be implemented for operational generation?

+  Operationalization criteria

®

®
®
®

Reliable high resolution observations
(e. g. MODIS/VIIRS VI/LST products)

Simple to implement

Computational efficiency requirement (latency less
than 6 hours)

Satisfactory accuracy

UMD / CICS 2121
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Downscaling Algorithms

Data Type Input Examples Reference

Source Acti Entekhabi et al (2014, ATBD)
Active ntekhabi e 2014, :

microwave Radar backscatters SMAP L2-SM-A/P product e sl mrers Bl el srey
Optical Vegetation Index, albedo VIIRS SM product Zhan etal., 2002
Thermal LST R LST changes and SM; Fang et al. 2013; Carlson, 2007;
Infrared “universal triangle” Petropoulos et al., 2009; Zhan et al., 2002
Microwave BT Ka-band BT AMSE-E or AMSE2

Down- Type Examples Reference

Scaling

Approach | Liner Regression  1.Relationship between backscatterand SM Entekhabi et al (2014,

2, linear regression relationships between daily LST changes and SM
Change detection Relationship between changes in radar backscatter and SM

Regression Tree RT, adata mining technique, is used to sharpen coarse resolution

(RT) satellite imageries using fine resolution optical products
Neural network NN is trained with samples of AMSR-E BT matched to SMOS Lam
(INIV) which is then applied retrospectively or future observations

Using the tau-omega equation and a radar backscatter model from
the Observing System Simulation Experiment (OSSE) of the SMAP
mission (formerly called Hydros), Zhan et al (2006) implemented a
Bayesian merging method to combine the observations of 36km
radiometer and 3km radar

Bayesian merging

Combined
modeling and RS

Models are used in the downscaling
DISPATCH method

Deterministic Using fine-scale SM obtained from a hydrologic model

ATED)
Fang etal. 2013

Njoku et al., 2002; Narayan
etal., 2006; Das etal., 2011

F. Gao, et al. 2012

Rodriguez-Fernandez et al.,
2015,2016

Zhan et al (2006, TGARS)

Merlin et al.
2005,2006,2008
Fang etal. 2013

Ines et al. 2013

Merlin et al (2008, RSE) 3/21
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@ NASA SMAP Enhanced 9km (L3 SM_P_E)

o Enhanced SMAP radiometer-based SM retrievals at 9 km resolution

o Enhancement of spatial resolution is based on oversampled observations in the
across-track direction
Jeffrey Piepmeier, Steven Chan, at al., 2016

@ SMAP L2-SM-A/P Product Algorithm

o Linear relationship between the radar backscatter (3 km) and radiometer
brightness temperature (36 km)
o Linear coefficient being vegetation-dependent and spatially homogeneous across
the SMAP radiometer pixel
o Available for only 84 days before July 7t, 2015
D. Entekhabi, et al., 2014
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% Thermal Inertial Linear Regression

o Linear regression relationships between daily / W
land surface temperature (LST) changes and S
average soil moisture under different i
vegetation conditions ‘ .

o In our study, Evaporative Stress Index (ESI) o | oo R
from the Atmosphere-Land Exchange Inversion \*\‘&
(ALEXI) model was treated as a soil moisture Fangatal.2013 1
proxy

% Regression Tree Algorithm O R
: Landsat Surface Reflectance I—
- o= - 1
O Data mlnlng teChanue developed to Sharpen IHomageneou:PJxel {(MODIS) | IReerclan:e [MODIS]I
Yy

coarse resolution thermal satellite imageries o I e
using fine resolution optical products

LAl Samples LAl Samples (MODIS) |

o MODIS LAI and LST (daytime and nighttime) —
Gao at al., 2012, 2017
yj NOAA NESDIS-STAR  ci UMD / CICS 5/21



SMAP SM products to be validated

ID Satellite SM Products Resolution <IPEEL LIl
coverage coverage
A0- SMAP 36km April 2015,
SMAP36km (L3_SM_P) 36 km Global Oct., 2016
Al- NASA SMAP Enhanced 9km 9 km Global April 2015,
SMAP9Km (L3_SM_P_E) Oct., 2016
Downscaled SMAP SM based on Thermal April-Oct. 2015,
AZLR ESI Inertial Linear Regression Algorithm km CONUS April-July, 2016
Downscaled SMAP SM based on Data April 2015 -
AARUELYL Mining method, using MODIS LST/LAI el il Oct. 2016
Downscaled SMAP SM based on Data April 2015 -
A4-RT1km Mining method, using MODIS LST/LAI Lkm Global Oct. 2016

NOAA NESDIS-STAR  cicsii UMD / CICS
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D1-CREST-SMART Network

D4-Tibetan Plateau
Millbrook, NY

Tibet, China; K. Yang, et al., 2013

2011

@ SM In-situ

measurements
Dz-USDA-ARS SM Networks D3-OzNet
R < \7\\1 v Australia; 4. B. Smith, etal., 2012
2 aESSMSE o R
M. H. Cosh, et al. 2008
‘@ NOAA NESDIS-STAR c@ UMD / CICS
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- SM in-situ measurements

(® D1 -- CREST-SMART Network ® D2 -- USDA-ARS
+  NOAA Cooperative Remote Sensing +  Walnut Gulch Watershed -- Arizona;
Science and Technology (CREST) semiarid climate region; rangeland(83%),
Center of City University of New forest(12%), and miscellaneous(5%)
York +  Little Washita Watershed -- Oklahoma;
+  Soil moisture advanced radiometric sub-humid region; mixed agricultural
testbed (SMART) land; grassland/rangeland (68%),
+  Composite of open field (40%) and cropland (20%), forests (8%), and
i (0]
forested (60%) terrains and a small miscellaneous uses (4%)
urban fraction (the Village of +  Fort Cobb Watershed -- Oklahoma;
Millbrook) semiarid; agricultural land
+  Millbrook, New York +  Little River Watershed -- Georgia;
woodland (40%), row crops (36%) ,
2o pasture (18%), and 4% water

Lat
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- SM in-situ measurements

(® D3 -- OzNet Hydrological Monitoring
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Legend

An Australian monitoring network for
soil moisture and micrometeorology
developed by Monash University and
the University of Melbourne

More than 30 sites distributed across
the Yanco study area and 14 for
Kyeamba

Predominantly agricultural with the
exception of steeper parts of the
catchment, which are a mixture of
native eucalypt forests and exotic forest
plantations

b [} ; ? Murrumbidgee Catchment

w0 0 30 60

ciosi® UMD / CICS

(® D4 -- Tibetan Plateau SM Networks

<4

Maqu soil moisture measurement
networks developed in the Tibetan
Plateau by Chinese Academy of
Sciences

About 25 sites in the east TP covers
about 100kmx60km area with sensors
at 5, 10, 20, 40, 80cm depths

A uniform land cover of short
grassland used for grazing by sheep
and yaks

e

From Jun Wen of CAS

9/21



SMAP SM at coarse and fine scales

. Downscaled SMAP SM at 9km Downscaled SMAP SM at 1km
S{;‘Jls‘{gﬂﬁ;];l Enhance:tss\k[;l’ {]:; dél:‘rlne]r]et;:l):msed SM based on Thermal Inertial Linear based on Regression Tree Algorithm, using
- == Regression Algorithm using ESI ‘\lODIS LST amd L.-'&I (1lm)

o Wy

‘I

o 1

Figure 1. Comparison of SMAP SM data sets to be validated, over Oklahoma region (100.15W~ 94 53W_ 34 "N»B? OGN) on April 30‘51 7015
including 1) SMAP SM product at 36km (L3 _SM P); 2) Enhanced SMAP radiometer-based SM at 9km (LB_SM_P_E); 3) Downscaled SMAP SM at okm based
on ESL; 4) Downscaled SMAP SM at 1km based on Regression Tree Algorithm, using MODIS LST and LAT (1km)

0.01 0.05 Q.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 2. Comparison of SMAP SM data sets to be validated, over Texas region (38§ W~ 92 5W_31N~35N)_on April 224, 2016,
including 1) SMAP SM product at 36km (L3 _SM_P); 2) Enhanced SMAP radiometer-based SM at 9km (L3_SM P E): 3) Downscaled SMAP SM at
Ol based on ESI; 4) Downscaled SMAP SM at 1km based on Regression Tree Algorithm, using MODIS LST and LAI (1km)

@ NOAA NESDIS-STAR c@ UMD / CICS 10/21



Validation results

% D1 - CREST-SMART Network
@ D2 - USDA-ARS
% D3 - OzNet Hydrological Monitoring

% Results @ D4 - Tibetan Plateau SM Networks

cesfind UMD/ CICS /21
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SM retrievals and in-situ obs

4/1 4/15 4/29 5/13 5/27 6/10 6/24 718 7122
CREST-SMART, TheFountains (73.6587W, 41.7313N), NY, U.S. 2016

Product A-SMAP36km A1-NASA9km A2-RT_9km A3_LR_ESI A4-RT_1km

ubRMSE 0.0692 0.062 0.0769 0.0372 0.0702

Cor 0.5514 0.6621 0.4778 0.8955 0.5703
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D1- CREST-SMART

@ Error statistics (RMSE and " A0-SMAP36Km
correlation) averaged from four 0 | B A1-NASA9Km |
. : : Bl A2-RT_9km
ground stations in CREST- I A3_LR_ESI
SMART network i
® NASA Enhanced 9km product go
. . 0
shows moderate improvement in =
accuracy T
n
@ The use of thermal inertial linear ‘g
regression algorithm (A3) has W 02
seen the largest improvement,
reducing RMSE by 0.059 and
strengthens correlation by 0.257
® Downscaled products using data 0.0
.. . RMSE Cor
mining method have seen higher o ,
Validation against CREST-SMART (D1)
RMSE and lower Cor NY, U.S. ~(41.788N, 73.658W), April-July, 2016

@ NOAA NESDIS-STAR cm UMD / CICS 13721
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SM retrievals and in-situ obs
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LittleWashita, ID-16020013 (98.2511W, 34.9053N)
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Jul 15 Aug 4 Aug 24 Sep 13 Oct 3 Oct 23
WalnutGulch, ID-16010028 (110.852W, 31.8167N)
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Validation against USDA ARS, U.S. April-July, 2015; Validation against USDA ARS, U.S. April-July, 2016;
Averaged over total 71 in-situ sites ~(32.935N, 99.615W) Averaged over total 71 in-situ sites ~(32.935N, 99.615W)

@ Averaged ubRMSE of each involved satellite SM product for USDA-ARS networks over
warm season (April — Oct.) in 2015 (left) and 2016 (right)

@ Downscaled SMAP products have seen a decrease in uUbRMSE in both years
@ The improvement in 2015 is larger than that in 2016

@ NOAA NESDIS-STAR c@ UMD / CICS 15721



® The OzNet network
In Australia (D3)
provides long-term
field measurements in
very high quality

® Both SMAP original
and downscaled
products agree well
with the ground
measurements

SM retrievals and in-situ obs

AO- Al-  A2- A4
UDRMSE  SMAP36 NASA9 RT 9km RT 1km

k11  0.0723 0.0748 0.0529 0.0621

yb7a 0.0556 0.0554 0.0434 0.0352

SM retrievals and in-situ obs

—
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+ AO0-SMAP36km & A2-RT_9km
A1-NASA9KkmM *  A4-RT_1km

In-situ

1 | — 1 1

Oct1 Nov1 Dec1 Jan1 Feb1 Mar 1Wy1

OzNet, ID-k11 (147.429E, 35.272S)

+ AO-SMAP36km a4 A2-RT_S9km
*  A1-NASA9km *  A4-RT_1km

In-situ

e .~ |
1 " M M | . M | . 1 . M | L 1

Oct 1

Nov 1 Dec 1 Jan 1 Feb1 Mar 1 Apr 1 May 1
OzNet, ID-yb7a (146.269E, 34.9885S)
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@ A3 (ESI-based) is exclusive
because current ESI product
covers only the North America
domain

@ Validation period extends from
Sept. 2015 to May 2016

Error Statistics

@ Downscaled products show
lower ubRMSE and higher
correlation than those from
coarse scale SMAP SM
product

@‘ NOAA NESDIS-STAR c@ UMD / CICS
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Validation against OzNet network, Australia. Sept. 2015 -- May 2016;
Averaged over total 38 in-situ sites ~(34.899S, 146.313E)
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o D4- Tibetan Plateau

; .
s et
= L & e,
R o o WS

@ Validation period extends from BT
April - June, 2015 I AN e l
L A4-RT_1km
@ Downscaling did not give 07
added value to data accuracy 2
@ Finer resolution data have seen § T
arise in bRMSE comparedto 8
SMAP 36km product -
@ Investigation on why
downscaling performance is 000
poor Over that reglon IS Validation a:::ls\fi’Aanu Network in Tibet (D4), Chinz(,);\pril-July, 2015
OngOIng Averaged over total 15 in-situ sites ~(33.867N, 102.23E)

@‘ NOAA NESDIS-STAR c@ UMD / CICS 18/21
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@ Downscaled SM products from all algorithms generally
outperform the 36km product for most in situ data sets

@ Downscaled 9km SM product based on ESI has the best
agreement with the two in situ networks in the U.S.

@ Data mining method using optical or thermal observations is
promising for operational generation of fine resolution
product

@ Algorithms using optical/thermal observations could not be
obtained for cloudy areas

icsfind UMD / CICS 19/21
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SMAP 36km

i
I‘ MW LST based

OK
May 7, 2016

OK
April 10, 2016

TX
April 6, 2015

RTLST

0,15 0.z .25 0.3 0.3% O .45 0.5
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.___._.:_J,.. Future work

@Introduce MW brightness temperature observations
(AMSR2) under cloudy conditions to improve spatial
coverage

@ Explore airborne SM data for validation
@ Upscale in-situ measurements for validation

@ Evaluate characteristics of different downscaling algorithms
based on operationalization criteria

@ Transition downscaled high resolution SMAP soil moisture
product into NCEP operations

icsfind UMD / CICS 21/21
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, - transpiration &
o ) evaporation

B Veg stress parms

tBane soil evap parms runoff
soil evaporation + 7 >
’ i
Sfc moisture ~

infiltration ™

$

Rootzone moisture — » Root uptake

drainage l,

WATER BALANCE APPROACH
(prognostic modeling)

@ NOAA NESDIS-STAR cm UMD / CICS

SURFACE TEMPERATURE
|
- Tsa-il & Tveg

transpiration &
evaporation

Tsoi — = soil evaporation

Given known radiative energy inputs,
how much water loss is required to keep

the soil and vegetation at the observed
temperatures?

ENERGY BALANCE APPROACH
(diagnostic modeling)
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