

CICS-MD Science Meeting

November 06, 2017

NOAA Soil Moisture Operational Product System (SMOPS) Version 3.0: Validations and Improvements

Jicheng Liu^{1, 2}, Xiwu Zhan², Limin Zhao³, Jifu Yin^{1,2}, Li Fang^{1,2}, Mitch Schull^{1,2}, Weizhong Zheng^{4,5}, and Micheal Ek⁴

¹ Earth System Science Interdisciplinary Center/Cooperative Institute for Climate and Satellites-Maryland, University of Maryland, College Park, MD 20740, USA.

² Center for Satellite Applications and Research, NOAA/NESIDS, College Park, MD 20740, USA.

³ Office of Satellite an Product Operations, NOAA/NESIDS, College Park, MD 20740, USA.

⁴ Environmental Modeling Center, NOAA/NCEP, College Park, MD 20740, USA.

⁵ I.M. Systems Group, Rockville, MD 20852, USA.

Outline

- Objectives
- SMOPS
- Methodology
- Version History
- Validation Efforts
- Next Steps

Objectives

- Global soil moisture is one of the critical land surface initial conditions for numerical weather, climate, and hydrological predictions.
- Land surface soil moisture remote sensing provides a practical tool.
- A number of soil moisture products have been produced from different satellite sensors (SMOS, ASCAT-A/B, AMSR2, SMAP etc).
- Time latency of some of the products are too long for operational use.
- Different data formats, projection and insufficient spatial and temporal coverage of soil moisture products from individual sensors.
- SMOPS is to:
 - 1. Produce SM products directly from TB when the latency of the official SM product is too long for operational use.
 - 2. Provide an operational blended SM product that has better spatial coverage and short latency for operational use.
 - 3. Provide a one-stop shop for most of the available operational soil moisture products.

SMOPS

http://www.ospo.noaa.gov/Products/land/smops/index.html

- ➤ The Soil Moisture Operational Products System (SMOPS) is onestop shop for all available operational soil moisture products from different satellite sensors.
- SMOPS provides a blended soil moisture product that has improved spatial and temporal coverage.
- Operationally running at NOAA/NESDIS/OSPO.
- Updated with newly launched sensors.

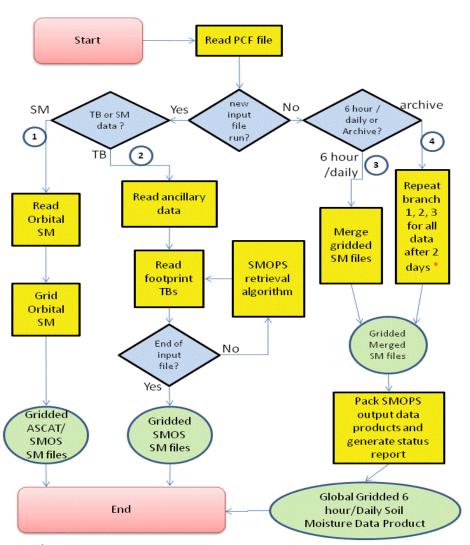
Operational data access contact: <u>Limin.Zhao@noaa.gov</u>

Historical data contact: Xiwu.Zhan@noaa.gov, Jicheng.Liu@noaa.gov

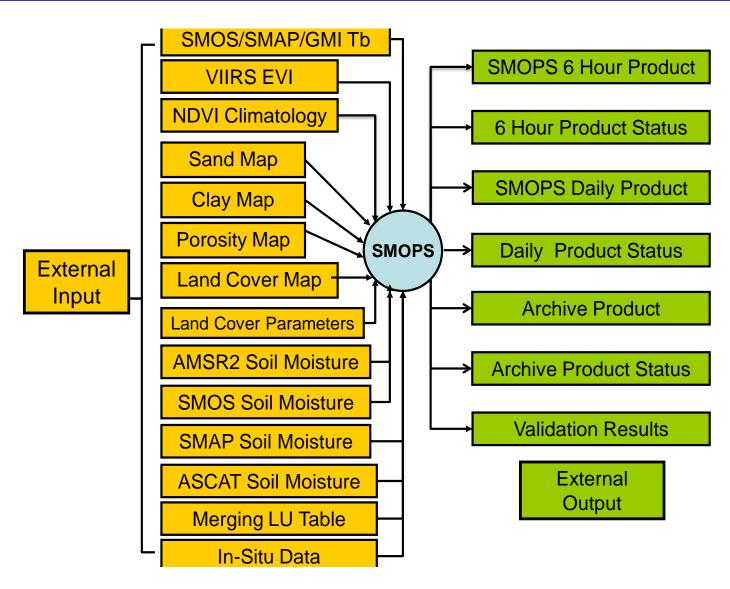
What is SMOPS: SM Products

Major SMOPS External Output Description

Item	Description	Format	Projection	Spatial Coverage	Spatial Resolution	Data Latency	Main Purpose
SMOPS 6 Hour Product	SMOPS 6 hour Gridded Soil Moisture	GRIB2	Lat/Long	Global	0.25 degree (720x1440)	3 Hours	Operational
SMOPS Daily Product	SMOPS Daily Gridded Soil Moisture	GRIB2	Lat/Long	Global	0.25 degree (720x1440)	6 Hours	Operational
SMOPS Archive Product	SMOPS Daily Gridded Soil Moisture	netCDF4	Lat/Long	Global	0.25 degree (720x1440)	2 Days	Archive

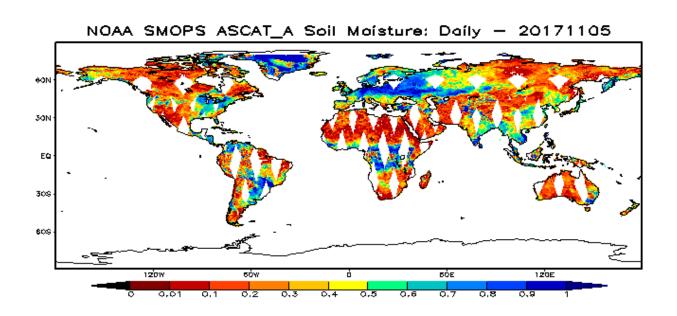

What is SMOPS: What's Inside

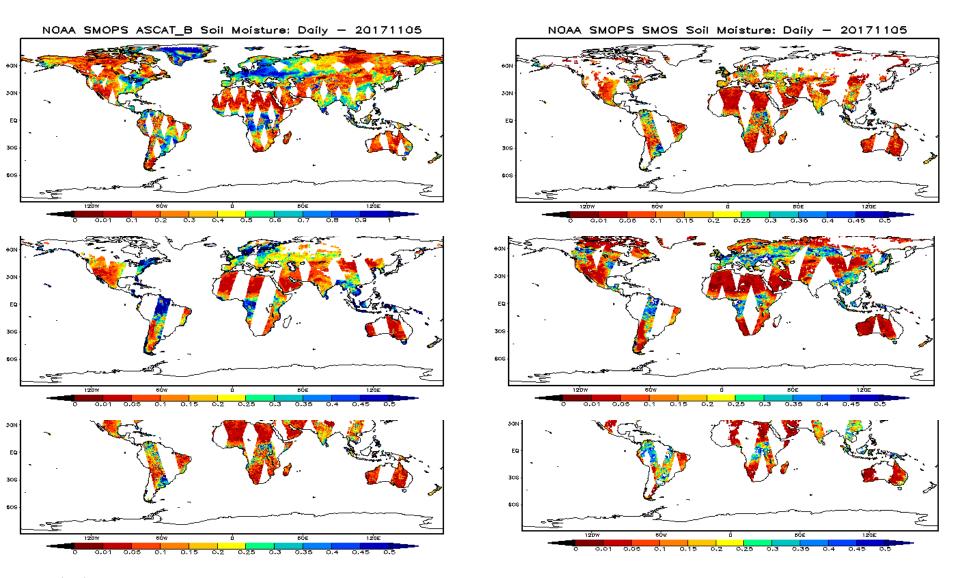
Layer #	Data Description	Units / Format	Data Type	Fill Value	Valid Range	Scale Factor
1	Blended Soil Moisture	%/%	2-byte signed integer	-9999	0 – 500	1000
2	NRT SMOS Soil Moisture	%/%	2-byte signed integer	-9999	0 – 500	1000
3	ESA SMOS Soil Moisture	%/%	2-byte signed integer	-9999	0 – 500	1000
4	ASCAT-A Soil Moisture	%/%	2-byte signed integer	-9999	0 – 1000	1000
5	ASCAT-B Soil Moisture	%/%	2-byte signed integer	-9999	0 – 1000	1000
6	AMSR2 Soil Moisture	%/%	2-byte signed integer	-9999	0 – 500	1000
7	GMI Soil Moisture	%/%	2-byte signed integer	-9999	0 – 500	1000
8	NRT SMAP Soil Moisture	%/%	2-byte signed integer	-9999	0 – 500	1000
9	SMAP Soil Moisture	%/%	2-byte signed integer	-9999	0 – 500	1000
10	SD of Blended SM	%/%	2-byte signed integer	-9999	0 – 500	1000



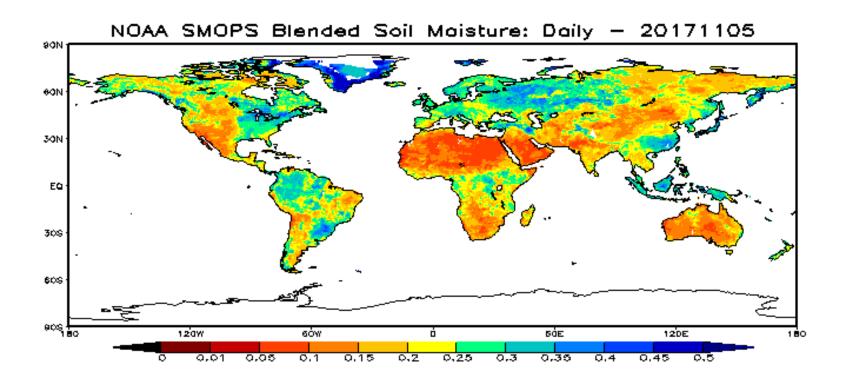
*All data acquired within the 6 hour or whole day time period arrived in the past 48 hours

- Branch 1 is the SM Pre-Processing function
- Branch 2 is the Retrieval function
- Branch 3 is the Merging function
- Branch 4 is a reprocessing step for the Archive Product
 - » There is a possibility that the delivery of SM data from individual sensors acquired in the past 24 hours is delayed.
 - » If these data becomes available within the next day (i.e. the past 48 hours), another SMOPS archive run will be activated to generate the daily global soil moisture product for archiving.

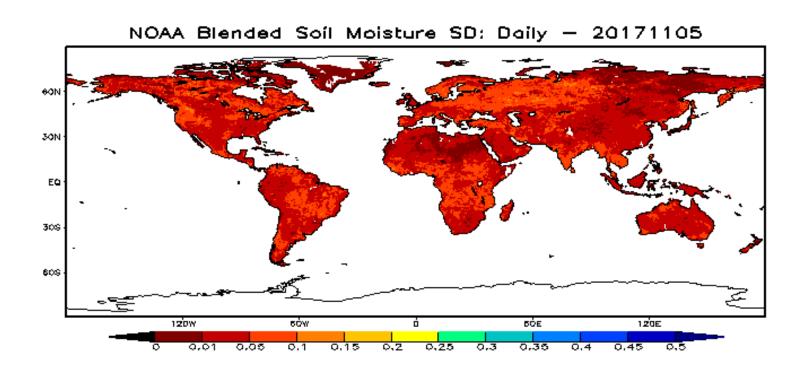




- All microwave soil moisture remote sensing satellites, currently in space or to be launched in near future, do not have a full global coverage for every day.
- The map shows example of soil moisture map retrieved from ASCAT-A. Significant gaps exist.



11

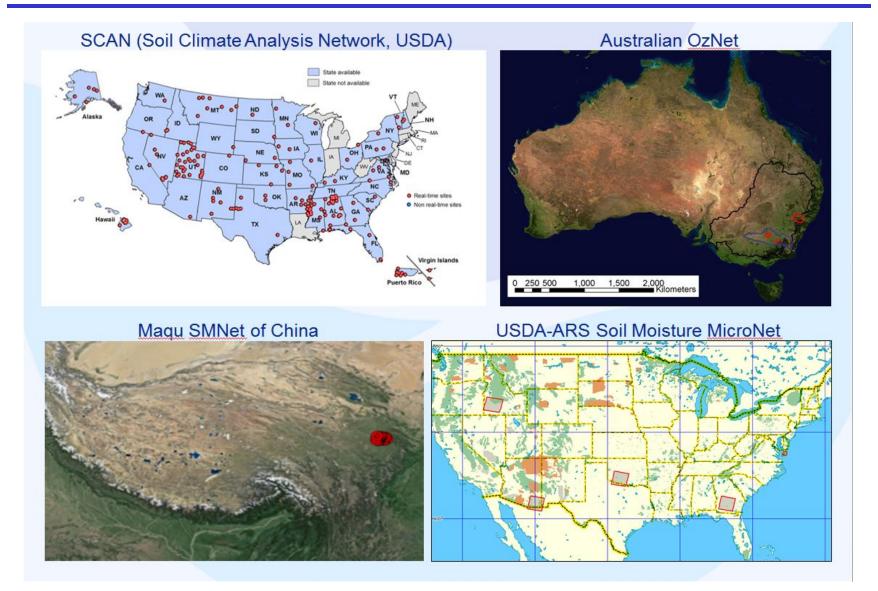

 To increase the spatial coverage of daily soil moisture retrievals, SMOPS provides a soil moisture data layer that merges all available satellite soil moisture retrievals in addition to the individual soil moisture retrievals from each of the available satellites.

 Version 3.0 also includes a layer that shows the standard deviation for generating the blended SM map.

SMOPS Version History

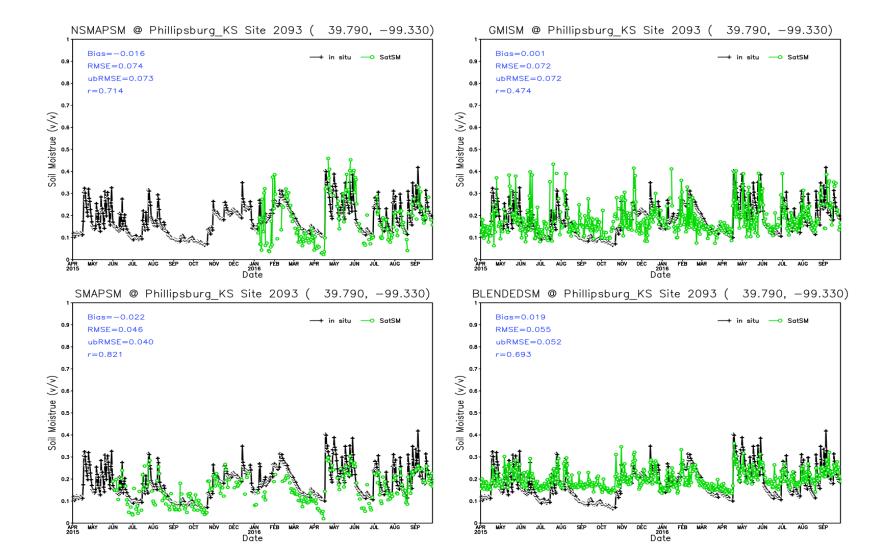
- Version 1.0 went operational: September, 2012
- Version 1.1: June, 2013 (SMOS data format change)
- Version 1.2: Feb., 2015 (Added ASCAT-B)
- Version 1.3: May, 2015 (SMOS data format change)
- Version 2.0: October, 2016 (Added AMSR2 and NRT SMOS)
- Version 3.0: September, 2017, Updated with SMAP and GMI

SMOPS Version History

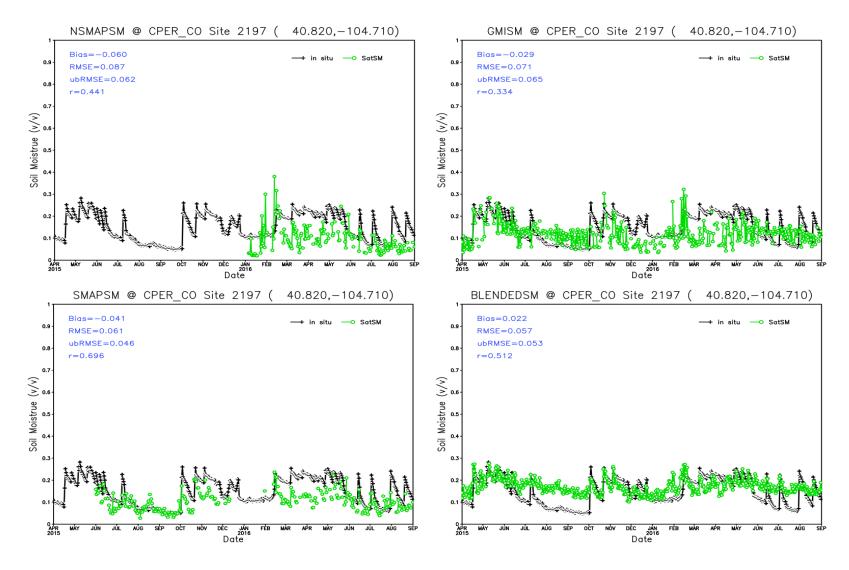


Soil Moisture Product	SMOPS Version 1.3	SMOPS Version 2.0	SMOPS Version 3.0
SMOPS Blended	√ (1)	√ (1)	√ (1)
NOAA AMSR-E	√ (2)	×	×
NRT SMOS	×	√ (2)	√ (2)
ESA SMOS	√ (3)	√ (3)	√ (3)
EUMETSAT ASCAT-A	√ (4)	√ (4)	√ (4)
EUMETSAT ASCAT-B	√ (5)	√ (5)	√ (5)
NOAA WindSat	√ (6)	×	×
NOAA AMSR2	×	√ (6)	√ (6)
GMI	×	×	√ (7)
NRT SMAP	×	×	√ (8)
NASA SMAP	×	×	√ (9)
Blended SD	×	×	√ (10)

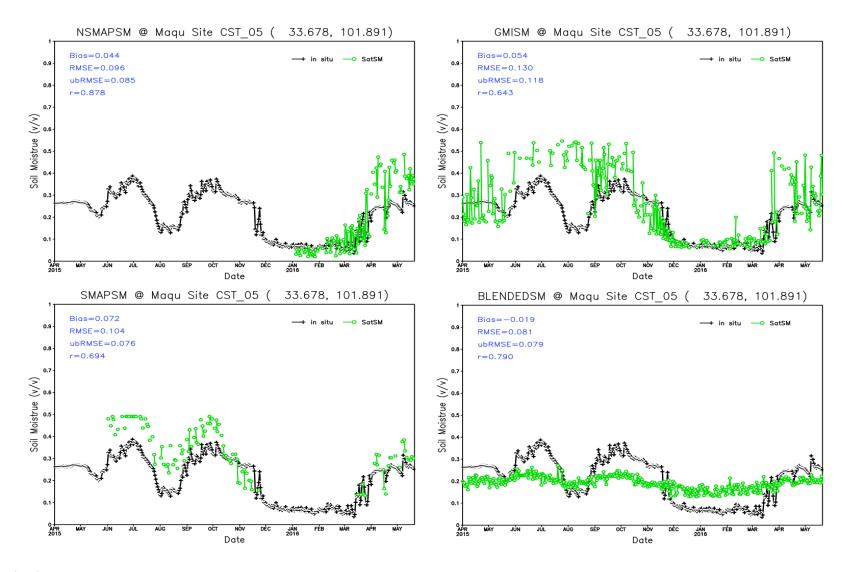
Validation Data Sets



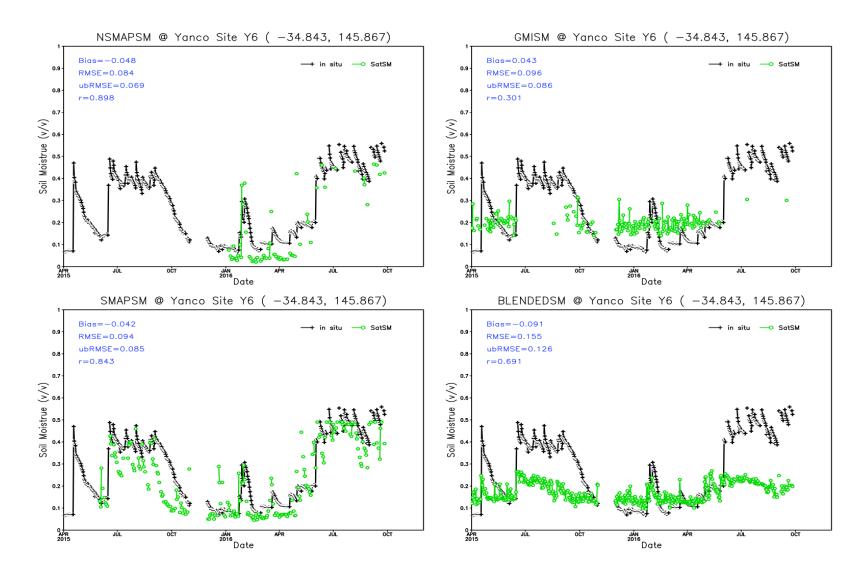
CASE 1: SMOPS SM vs Phillipsburg_KS


16

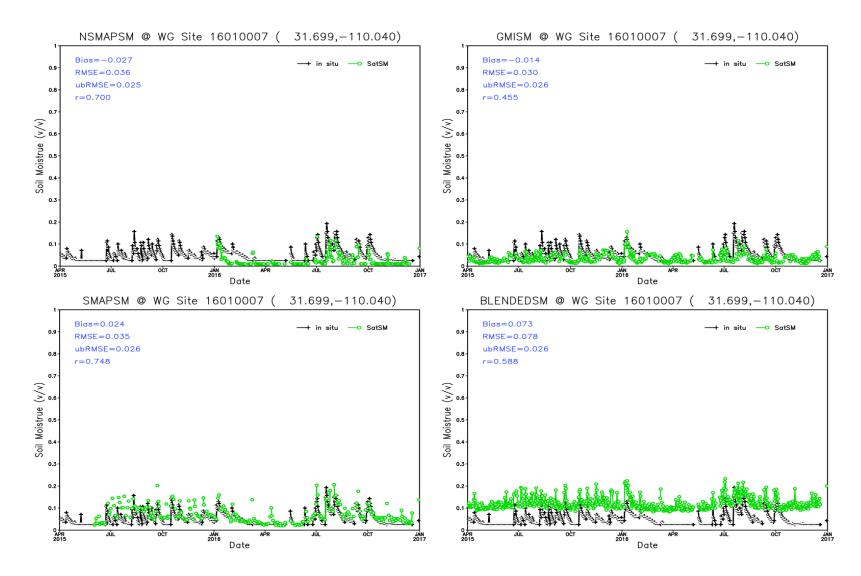
CASE 2: SMOPS SM vs CPER_CO



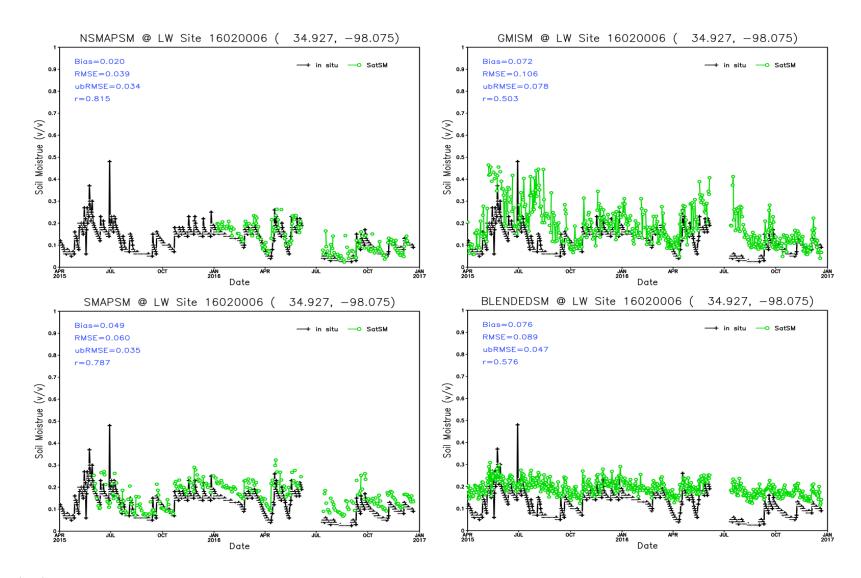
CASE 3: SMOPS SM vs Maqu_CN



CASE 4: SMOPS SM vs Yanco_OZ



CASE 5: SMOPS SM vs WG_AZ



CASE 6: SMOPS SM vs LW_OK

SMOPS SM Product Validation

In city Citoc	Correlation Coefficient (r)					
In situ Sites	GMI	NSMAP	SMAP	Blended		
Phillipsburg, KS	0.474	0.714	0.821	0.693		
CPER, CO	0.334	0.441	0.696	0.512		
Torrington, WY	0.437	0.684	0.711	0.577		
Geneva, NY	0.355	0.501	0.779	0.486		
Maqu, China	0.643	0.878	0.694	0.790		
Yanco, Australia	0.301	0.898	0.843	0.691		
WG, AZ	0.455	0.700	0.748	0.588		
LW, OK	0.503	0.815	0.787	0.576		
Average	0.438	0.704	0.760	0.614		

Different products have different performance, which could be caused by the different heterogeneity feature of in situ site and product accuracy

SMOPS SM Product Validation

In situ Sites	Unbiased Root-mean-square- error(ubRMSE)					
	GMI	NSMAP	SMAP	Blended		
Phillipsburg, KS	0.072	0.073	0.040	0.052		
CPER, CO	0.065	0.062	0.046	0.053		
Torrington, WY	0.047	0.034	0.035	0.040		
Geneva, NY	0.064	0.094	0.047	0.066		
Maqu, China	0.118	0.085	0.076	0.079		
Yanco, Australia	0.086	0.069	0.085	0.126		
WG, AZ	0.026	0.025	0.026	0.026		
LW, OK	0.078	0.034	0.035	0.047		
Average	0.070	0.060	0.049	0.061		

The ubRMSE average **6.1%** [v/v] meets the **4-10%** requirement specified in the NCEP user request (SPSRB requirement #0707-17).

SMOPS SM Product Validation

> Strengths and weaknesses

- Soil moisture value differs from different products
- SMOPS brings in the available value with best quality to the blended product
- ☐ For most of the validation sites with relatively homogeneous land surface type, RMSE values of SMOPS blended product are less than 0.05.
- ☐ The coverage of blended product is the best, in terms of both spatial and temporal samplings.

Next steps

- Continue to improve data quality from individual sensors
- Better CDFs method for larger temporal variations of blended product
- > To use different weights in blending based on the performance of individual sensors
- Ready for next new sensor

Thank you!