

Evaluation of Different Calibration Approaches for JPSS CrIS

Yong Chen¹, and Yong Han²

Acknowledgement: CrIS SDR science team for the development and improvement of J1 CrIS SDR algorithm

¹CICS-MD, ESSIC, University of Maryland, College Park, MD, <u>Yong.Chen@noaa.gov</u> ²NOAA/NESDIS/STAR, College Park, MD

Fourth Annual CICS-MD Science Meeting, November 23-24, 2015

Outline

S-NPP CrIS full spectral resolution measurements and SDRs

Il CrIS SDR algorithm/software baseline version

[®] Calibration algorithm improvements and evaluations

Summary and future work

S-NPP CrIS Normal & Full Resolution SDRs

Spectral resolution modes:

- Full spectral resolution:
 - 0.625 cm⁻¹ all three bands
 - 2211 channels
- Normal resolution:
- 0.625 cm⁻¹(LW), 1.25 cm⁻¹(MW), 2.5 cm⁻¹(SW)
- 1305 channels

Wavenumber (cm⁻¹)

S-NPP/JPSS1 CrIS SDR Specifications

CrIS SDR specifications. Black – normal spectral resolution (NSR); Red – full spectral resolution (FSR)

Band	Spectral Range (cm ⁻¹)	# of Chan.	Spectral Res. (cm ⁻¹)	NEdN @287K BB (mW/m²/sr/cm ⁻¹)	Radiometric Uncertainty @287K (%)	Frequency Uncertainty (ppm)	Geolocation Uncertainty (km)
LWIR	650-1095	713	0.625	0.14	0.45	10	1.5
	650-1095	713	0.625	0.14	0.45	10	1.5
MWIR	1210-1750	433	1.25	0.06	0.58	10	1.5
	1210-1750	865	0.625	0.085	0.58	10	1.5
SWIR	2155-2550	159	2.50	0.007	0.77	10	1.5
	2155-2550	633	0.625	0.014	0.77	10	1.5

Number of FSR channels: 2211; Number of NSR channels: 1305

J1 CrIS SDR Algorithm/Software Baseline Version

- Delivered on January 30, 2015
- Software/software changes
 - Capable to process both normal and full spectral resolution SDRs
 - Backward compatibility (multiple calibration algorithms implemented)
 - Correction Matrix Operator (CMO) file separated into two files: 1) SA-1 matrix; 2) backup of Engineering packet
 - Resampling matrix calculation following neon calibration
 - Resampling and self-apodization matrix algorithms are modified to reduce spectral ringing artifacts
 - Spectral calibration (CMO) applied to radiance noise (NEdN) calculation
 - New FCE detection/correction module

Processing Flow

Calibration Algorithm Improvement

- CrIS SDR radiance spectra are un-apodized
- Ringing artifacts appeared when spectra are compared among the 9 FOVs, between forward and reverse sweep direction, and between observed and simulated spectra
- These ringing artifacts are due to
 - Non-circular FIR filtering
 - Spectral calibration applied to radiometrically calibrated spectrum, not the raw spectrum.
 - Channel response model in radiance simulation not taking into account the instrument responsivity
- Progress has been made in addressing these issues and reducing these ringing artifacts

FTS Optical & Electrical Responsivity Modifies Shape of Scene Spectrum

Predina et al, OSA HISE, 2015

Optimizing Calibration Equation

Current algorithm:

Radiometric calibration removes the effect of optical/electrical responsivity. If radiometric calibration precedes ILS spectral correction, then the ILS correction is actually performed on the wrong spectrum.

$$S_{Cal} = SA^{-1} \cdot F \cdot f \cdot \{ \underbrace{\$_{2}}^{1} (SA \cdot B_{ICT}) \}$$

$$\Delta S_{1} = FIR^{-1}(S_{e} - \langle S_{DS} \rangle)$$

$$\Delta S_{2} = FIR^{-1}(\langle S_{ICT} \rangle - \langle S_{DS} \rangle)$$
FIR filter removal
FIR filter removal

 $S_{Cal} = B_{ICT} \cdot \frac{F \cdot SA^{-1} \cdot f \cdot \{\frac{\Delta S_1}{Phase(\Delta S_2)}\}}{F \cdot SA^{-1} \cdot f \cdot \{\frac{\Delta S_2}{Phase(\Delta S_2)}\}} = B_{ICT} \cdot \frac{F \cdot SA^{-1} \cdot f \cdot \{\frac{\mathbf{a}}{\mathbf{a}} \frac{1}{\mathbf{a}} | \Delta S_2 |\}}{F \cdot SA^{-1} \cdot f \cdot | \Delta S_2 |}$

New algorithm:

The new algorithm applies spectral calibration to raw spectra and take into account the effect of instrument responsivity, and allow a wider post-filter *f*

 S_e , S_{DS} , S_{ict} – raw spectra of earth scene, deep space & internal calibration target

 B_{ICT} – calculated ICT spectrum

SA⁻¹ – self-apodization correction matrix

F – spectral resampling matrix

f – post-calibration filter

Responsivity in Spectrum Simulation

$$S_{Cal} = B_{ICT} \cdot \frac{F \cdot SA^{-1} \cdot f \cdot \{ \frac{\mathbf{d}_{1}}{\mathbf{s}_{2}} | \Delta S_{2} | \}}{F \cdot SA^{-1} \cdot f \cdot | \Delta S_{2} |}$$

Use of instrument responsivity in **CrIS radiance simulation suggested** by UW is consistent with the new calibration equation

* P_r

S_{Ibl}

1200

Correction to Error from Non-circular Filtering

Due to non-circular FIR filtering (convolution), its effect is not completely removed from spectrum S by the operation S/FIR, resulting in ringing artifacts
 A method was developed to reduce ringing artifacts by using longer interferograms

Data points used in calibration:

	LW	MW	SW
Data points used in current algorithm	864	1050	797
Current available data points	866	1052	799
Additional data points available Nov 2, 2015	874	1052	808

Algorithms Evaluation: Observation Compared to LBL Simulation

The calibration improvements significantly reduce ringing artifacts

Algorithms Evaluation: FOV-2-FOV Consistency

 $(BT_{obs} - BT_{lbl})_{fov_i} - (BT_{obs} - BT_{lbl})_{fov_5}$

The calibration improvements significantly reduce ringing artifacts

Algorithms Evaluation: Sweep Direction Differences

$$(BT_{obs} - BT_{lbl})_{fwd} - (BT_{obs} - BT_{lbl})_{rev}$$

The calibration improvements significantly reduce ringing artifacts

Summary

- The baseline J1 CrIS SDR software was delivered with the capability to process FSR SDRs and the backward compatibility for old data
- S-NPP CrIS full spectral resolution SDRs have been routinely generated since Dec.
 4, 2014, available to the public
- The new calibration algorithm improvements significantly reduce radiance ringing artifacts and are being implemented in operational processing
- Inture work:
 - Algorithm evaluation for extended interferograms expected to be available before the end of 2015
 - Optimization of the post-filter
 - Continue evaluations of calibration algorithms
 - Lunar intrusion algorithm improvement
 - Impulse noise spike handling