



## The NOAA Microwave Integrated Retrieval System (MiRS) Validation Update and Applications

Yong-Keun Lee (U.MD ESSIC/CISESS) Christopher Grassotti (U.MD ESSIC/CISESS) Shuyan Liu (CSU/CIRA) Yan Zhou (U.MD ESSIC/CISESS) Quanhua (Mark) Liu (NOAA/STAR) Ming Fang (IMSG)

- Introduction of MiRS
- Evaluation of MiRS algorithm performance (NOAA-20 ATMS)
  - : T and WV
- MiRS Users and applications
- Improvements in MiRS
- Future plan
- Path Forward

## Algorithm Overview



- MW Only, Variational Approach: Find the "most likely" atm/sfc state that: (1) best matches the satellite measurements, and (2) is still close to an a priori estimate of the atm/sfc conditions.
- "Enterprise" Algorithm: Same core software runs on all satellites/sensors; facilitates science improvements and extension to new sensors.
- Initial capability delivered in 2007. Running v11.2 since Jan 2017 on SNPP/ATMS, N18, N19, MetopA, MetopB, F17, F18, GPM/GMI, Megha-Tropiques/SAPHIR, (eventually MetopC...)
- Transition of v11.3 (extended to NOAA-20/ATMS) to operations in March 2019.
- V11.4 to operations in July 2019.
- External Users/Applications: TC Analysis/Forecasting at NHC, Blended Total/Layer PW Animations at NHC and WPC Animations (CSU/CIRA, U. Wisconsin/CIMSS), CSPP Direct Broadcast (U. Wisconsin), NFLUX model (NRL, Stennis), Global blended precipitation analysis at NOAA/CPC (CMORPH).

## Dropsonde, GFS 6h Forecast, and MiRS Retrieval



Within 30 minute ranges between Dropsonde, GFS, and Mirs retrieval



- Introduction of MiRS
- Evaluation of MiRS algorithm performance (NOAA-20 ATMS and sometimes with NPP ATMS)
  : T and WV
- MiRS Users and applications
- Improvements in MiRS
- Future plan
- Path Forward

#### Temperature Profile Validation based on ECMWF data



Same instrument: ATMS **Only 50 minute apart** 

180

180

10

#### Temperature Profile Validation based on sonde data



#### Water Vapor Profile (g/kg) Validation based on ECMWF data



#### Water Vapor Profile (%) Validation based on sonde data

All conditions and surface types



- Introduction of MiRS
- Evaluation of MiRS algorithm performance (NOAA-20 ATMS)
  - : T and WV
- MiRS Users and applications
- Improvements in MiRS
- Future plan
- Path Forward

# MiRS Users

- Many users use MiRS products for operational applications and research.
- Operational users, who have subscriptions on PDA, are:
  - NWS NHC, NESDIS\_VIZLAB, CLASS, STAR, NASA GPM, NAVO, FNMOC, 557TH, NASA JPL, GNC-A, NWC, CHINA CMA, NWS AWIPS, NWS NCO, CIRA, NASA SPORT, SSEC/CIMSS, NESDIS operational applications: eTRaP, blended TPW, blended RR, IMS and TC,
  - NHC TC intensity (POC: Galina Chirokova (CIRA))
  - International Arctic Research Center, Alaska (POC: Carl Dierking, NOAA Liaison)
  - NOAA Climate Prediction Center (POC: Pingping Xie)
  - National Ice Center
  - NWS Weather Forecast Offices
- CSPP generates MiRS products for direct broadcasting
- Users also download MiRS from CSPP and generate MiRS products at their own machines

- Introduction of MiRS
- Evaluation of MiRS algorithm performance (NOAA-20 ATMS)
  - : T and WV
- MiRS Users and applications
- Improvements in MiRS
- Future plan
- Path Forward



- Motivation:
  - MiRS data currently used in the operational TC Intensity Algorithm (HISA, developed at CIRA). Utilizes T and WV sounding to estimate warm core structure combined with statistical/dynamic model to predict future intensification.
  - Challenge: (1) retrieval of warm core structure complicated due to presence of hydrometeors; scattering signal in TBs can interfere with retrievals (2) hurricane warm core structure is anomalous relative to "global climatology" currently used as a priori constraint in MIRS.
- Development of a MiRS-TC, a version of MiRS optimized for tropical cyclones, adapting several components:
  - Modify use of higher frequency channels in scenes likely to have large amounts of scattering
  - Test varying sources of First Guess/Background constraints (developing updated background mean/covariance based on observed TCs
  - Vary number of EOF basis functions for T and WV profiles:
- Testing ongoing with multiple TC cases
  - Dorian (2019), Florence (2018), Joaquin (2016), Matthew (2015), Edouard (2014)
  - Planned collaboration with CIRA to determine impact on TC intensity estimates

## Rain rate and Temperature Anomaly Cross-sections

Florence: 2018-09-12

#### **NPP Des**







#### TC Florence and Dorian NPP and N20 Temperature Bias: MiRS-ECMWF (Rainy, dist <= 100km)



### **Development of a Neural Network for MiRS Radiometric Bias Correction**

- Why bias correction?
  - To remove potential systematic bias between the measurements and the CRTM simulations.
- Current bias correction (static):
  - statistics of bias over oceanic and clear scenes. The bias is channel and scan position dependent. Local variations are not accounted for.
- A machine learning-based bias correction: Neural Network (NN)
  - NN was trained to learn the bias structure. Inputs are:
    - > Brightness temperature (TB) of the measurements,
    - Satellite viewing angle
    - Iatitude,
    - other geophysical parameters like cloud liquid water (CLW), total precipitable water (TPW), Tskin, Psfc, emissivity, etc.







Neural Network Schematic





## NN TB\_bias applied in MiRS



Yan Zhou et al. "Development of a Machine Learning-Based Radiometric Bias Correction for NOAA's Microwave Integrated Retrieval System (MiRS)" in poster session

- Introduction of MiRS
- Evaluation of MiRS algorithm performance (NOAA-20 ATMS)
  - : T and WV
- MiRS Users and applications
- Improvements in MiRS
- Future plan
- Path Forward

### JPSS/MetOp-SG sensor intercomparison (ATMS vs. MWS): Channel Selection

- MWS has similar channel set to ATMS, but with different polarizations for some frequencies.
- Will require updating several MiRS ancillary files (e.g. emissivity background means/covariances, ice/snow emissivity catalogs).
- Additional channel (24) at 229 GHz should help with ice detection and removal of impact on WV channels 19-23.
- Will need updated CRTM coefficients for MWS. UPDATE: coefficients now generated.

Source: MWS L1B ATBD

|     | AMSU/MHS    |                   |      |                             | ATMS             |                  |          | MWS   |                  |     |         |
|-----|-------------|-------------------|------|-----------------------------|------------------|------------------|----------|-------|------------------|-----|---------|
| Ch. |             | GHz               | Pol. | Ch.                         | GHz              | Pol              |          | h.    | GHz              |     | Pol.    |
| 1   |             | 23.8              | QV   | 1                           | 23.8             | QV               | 1        |       | 23.8             |     | QH      |
| 2   |             | 31.4              | QV   | 2                           | 31.4             | QV               | 2        |       | 31.4             |     | QH      |
| 3   |             | 50.3              | QV   | 3                           | 50.3             | QH               | 3        |       | 50.3             |     | QH      |
|     |             |                   |      | 4                           | 51.76            |                  |          |       |                  |     |         |
| 4   |             | 52.8              | QV   | 5                           | 52.8             | QH               | 4        |       | 52.8             |     | QH      |
|     |             |                   |      |                             |                  |                  | 5        | ;     | $53.246 \pm 0.0$ | 08  | QH      |
| 5   | 53.59       | 05±0.115          | QH   | 6                           | 53.596±0.1       | 15 QH            | 6        | 5     | 53.596±0.11      | 15  | QH      |
|     |             |                   |      |                             | •                |                  |          | '     | $53.948 \pm 0.0$ | 81  | QH      |
| 6   |             | 54.4              | QH   | 7                           | 54.4             | QH               | 8        | ;     | 54.4             |     | QH      |
| 7   | 4           | 54.94             | QV   | 8                           | 54.94            | QH               | 9        | )     | 54.94            |     | QH      |
| 8   | 5           | 55.50             | QH   | 9                           | 55.50            | QH               | 1        | 0     | 55.50            |     | QH      |
| 9   | 57.3        | 290344            | QH   | 10                          | 57.29034         | 4 QH             | 1        | 1     | 57.290344        | ŀ   | QH      |
| 10  | 57.290      | 344±0.217         | QH   | 11                          | 57.290344±0      | .217 QH          | 12       | 2     | 57.290344±0      | .21 | QH      |
| 11  | 57.290344   | ±0.3222±0.048     | QH   | 12                          | 57.290344 ±0.322 | 22±0.048 QH      | 1.       | 3     | 57.290344        | ŀ   | QH      |
| 12  | 57.290344   | 0.3222±0.022      | QH   | 13                          | 57.290344±0.322  | 2±0.022 QH       | 14       | 4     | 57.290344±0      | .32 | QH      |
| 13  | 57.290344   | 0.3222±0.010      | QH   | 14                          | 57.290344±0.322  | 2±0.010 QH       | 1        | 5     | 57.290344±0      | .32 | QH      |
| 14  | 57.290344±  | 0.3222±0.0045     | QH   | 15                          | 57.290344±0.3222 | 2±0.0045 QH      | 1        | 6     | 57.290344±0      | .32 | QH      |
| 15  | 89.0 QV     |                   |      |                             |                  |                  |          |       |                  |     |         |
| 16  | 89.0        |                   | QV   | 16                          | 88.2             | QV               | 1        | 7     | 89.0             |     | QV      |
| 17  | 157.0       |                   | QV   | 17                          | 165.5            | QH               | 1        | 8     | 164-167          |     | QH      |
| 18  | 183.311±1.0 |                   | QH   | 22                          | 183.311±1        | .0 QH            | 23       | 3     | 183.311±1.0      |     | QV      |
|     |             |                   |      | 21                          | $183.31 \pm 1$   | .8 QH            | 2        | 2     | 183.311±1.       | 8   | QV      |
| 19  | 183.        | 311±3.0           | QH   | 20                          | 183.311±3        | .0 QH            | 2        | 1     | 183.311±3.       | 0   | QV      |
|     |             |                   |      | 19                          | 183.311±4        | .5 QH            | 20       | 0     | 183.311±4.       | 5   | QV      |
| 20  | 191.31      |                   | QV   | 18                          | 183.311±7        | .0 QH            | 1        | 9     | 183.311±7.       | 0   | QV      |
|     |             |                   |      |                             |                  |                  | 24       | 4     | 229              |     | QV      |
| M   | Iatched     | Pol. is Different |      | Unique Passband Pol. is Dif |                  | Pol. is Differen | it and U | nique | Passband         | New | channel |

### JPSS/MetOp-SG sensor intercomparison (ATMS vs. MWS): Scan Geometry



20.0 km x 20.0 km C

Channels 3 to 16 34.2 km x 66.9 km



17.0 km x 17.0 km Channels 17 to 24 29.0 km x 56.7 km

- Both MWS and ATMS are cross-track scanning
- Scan positions: MWS=95, ATMS=96
- Scan angle range: MWS = ±49.31, ATMS = ±52.73
- MWS channels 1 and 2 FOVs are significantly smaller than ATMS; this may preclude the need for resampling/footprint matching

| Channels<br>(MWS) | Nadir re<br>(ki | solution<br>m) | Edge of scan resolution<br>(km) |               |  |  |  |
|-------------------|-----------------|----------------|---------------------------------|---------------|--|--|--|
|                   | MWS             | ATMS           | MWS                             | ATMS          |  |  |  |
| 1-2               | 39.6 x 39.6     | 74.8 x 74.8    | 67.6 x132.6                     | 141.8 x 323.1 |  |  |  |
| 3-16              | 20.0 x 20.0     | 31.6 x 31.6    | 34.2 x 66.9                     | 60.0 x 136.7  |  |  |  |
| 17-24             | 17.0 x 17.0     | 15.8 x 15.8    | 29.0 x 56.7                     | 30.0 x 68.4   |  |  |  |

Source: MWS L1B ATBD

# Path Forward

#### Improvements implemented

- Snowfall rate integration for N20
- Hydrometeors (CLW over land for light rain detection)
- Snow cover/amount (vegetation correction)
- Updated sea ice climatology mask (finer temporal/spatial resolution) → Great Lakes ice detection
- Planned further improvements
  - Air mass-dependent bias corrections (machine learning)
  - Rainy condition sounding (update a priori constraints)
  - Experimenting with MiRS version adapted for tropical cyclones (MiRS-TC)
  - Hydrometeors: precharacterization of precip type, improvements to CRTM i.e. scattering, particle size/shape distribution in CRTM)
  - Applications/user feedback
- Planned/ongoing activities
  - N20/ATMS validation: Continued daily assessments (as posted to MiRS website) including comparisons with radiosondes, and other in situ data (e.g. for rain rate and land surface temperature)
  - Reprocessing of NPP and N20 mission data (Spring/Summer 2020)
  - Plan for JPSS-2 (2020-2021), and EPS-SG (2019-2022)

Yan Zhou et al. "Development of a Machine Learning-Based Radiometric Bias Correction for NOAA's Microwave Integrated Retrieval System (MiRS)" in poster session

# 3-D Visualization with NOAA-20/ATMS: Super Typhoon Yutu, 2018<u>-10-24</u>

