

Continuity of Mid-Morning Polar Observations through EUMETSAT Metop-SG Satellites

Satya Kalluri Ph.D. Division Chief, NOAA/NESDIS/STAR/SMCD satya.kalluri@noaa.gov

Metop-SG Background

- EUMETSAT Polar System (EPS) programme Second Generation (EPS-SG) or Metop-SG (Second Generation) is the next generation follow on to the current Metop-A, B and C of satellites in the morning orbit
 - **Provide continuity** of mid-morning observations to NOAA Operations
 - Enhance current midmorning polar satellite products to be compatible with the new generation midafternoon JPSS products for consistency between AM and PM observations
- As part of the NOAA-EUMETAT Joint Polar Satellite (JPS) agreement, NOAA flies the afternoon satellites (JPSS) and EUMETSAT will fly the morning constellation (Metop-SG)

The Two Polar-orbits

-mid morning vs. afternoon

Successful collaboration between NOAA and EUMETSAT for the Joint Polar System

Two Satellite Configuration

Metop-SG-A

- IASI-NG (IASI, AIRS)
- METimage (AVHRR, MODIS)
- MWS (AMSU-A, MHS)
- 3MI (POLDER)
- Sentinel-5 (GOME-2, SCIAMICHY, OMI)
- RO (GRAS, COSMIC)

Metop-SG-B

- SCA (ASCAT, QUICKSCAT)
- MWI (SSMI, AMSR-E)
- ICI (AURA-MLS, Odin-SMR)
- RO (GRAS, COSMIC)
- ARGOS-4

Heritage

Notional Launch Schedule (According to EUMETSAT web page 10/18/2019)

SATELLITE	PLANNED LAUNCH DATE	START OF ROUTINE OPERATIONS	DETAILS
Metop-SG A1	Q4 2022	Q2 2023	823–848 km, METimage, IASI-NG, MWS, Sentinel-5, 3MI, RO
Metop-SG B1	Q4 2023	Q2 2024	823–848 km, SCA, MWI, ICI, RO, ADCS-4
Metop-SG A2	Q4 2029		823–848 km, METimage, IASI-NG, MWS, Sentinel-5, 3MI, RO
Metop-SG B2	Q4 2030		823–848 km, SCA, MWI, ICI, RO, ADCS-4
Metop-SG A3	Q4 2036		823–848 km, METimage, IASI-NG, MWS, Sentinel-5, 3MI, RO
Metop-SG B3	Q4 2037		817 km, SCA, MWI, ICI, RO, ADCS-4

Mapping of Metop-SG NOAA Instruments

		1200		
Mission	EPS-SG	JPSS	Applications Benefitting	
IVIISSICII	Instrument	Instrument	Applications benefitting	
Hyper-spectral Infrared Sounding	IASI-NG	CrIS	NWP, NWC, Air Quality, CM	
Visible/Infrared Imaging	METimage	VIIRS	NWC, NWP, CM, Hydrology, Oceanography	
Microwave Sounding	MWS	ATMS	NWP, NWC, CM	
Radio Occultation Sounding	RO	-	NWP, CM	
Nadir viewing UV/VIS/NIR/SWIR Sounding	Sentinel-5	OMPS	Ozone-UV, Air Quality, CM, Composition- Climate interactions	
Multi-viewing, -channel, -polarisation Imaging	3МІ	-	Air Quality, CM, NWC	
Scatterometry	SCA	-	NWP, NWC, Oceanography, Hydrology	
Microwave Imaging	SSMIS	AMSR	NWP, NWC, Hydrology, CM, Oceanography	
Ice Cloud Imaging	ICI	-	NWP, NWC, Hydrology, CM	

STAR Roles and Responsibilities

- Provide the enterprise algorithm development, test and validation of EPS-SG data to generate high quality environmental products required by the user community
- Establish science collaboration teams with EUMETSAT and other science colleagues to consider improvements to existing products
- Provide science maintenance of all products generated by the Metop SG PPA Project
- Deliver long term science maintenance to help troubleshoot on-orbit anomalies that impact product quality

Mapping JPSS Products and **MetOp-SG** Continuity

MWS

Sentinel-5

— Products with Key Performance Parameters

JPSS-P

Rev C

– Mission Unique Data Products

January 2, 2018

This chart is controlled by JPSS Program Systems Engineering

1 AP, RDR for the JPSS-2/3/4 Mission contingent on NASA manifest of the Radiation Budget Instrument (RBI) 2 Not applicable to JPSS-1; AP and RDR contingent on NASA manifest of OMPS-Limb on the JPSS-2/3/4 Mission ³All products contingent on the Global Change Observation Mission (GCOM) provided by the Japan Aerospace Exploration Agency *Blended and Derived Product requirements are managed by the NOAA JPSS Program and specified in segment-level documentation

The JPSS Program includes Ground System Support for the Metop, EPS-SG, DMSP, and GCOM missions

METImage

Contributions from Cao, Hillger, Miller

22 Bands

METImage-VIIRS Comparison

Highlighted bands are unique to each instrument.

VIIRS Band	Central Wavelength (µm)	
M-1	0.412	← — "violet blue"
M-2	0.445	
M-3	0.488	← — "true color blue"
M-4	0.551	
I-1	0.64	← 375 m visible band
M-5	0.672	
M-6	0.746	V/IIDS has E high
M-7/I-2	0.865	
M-8	1.24	resolution imagery
M-9	1.38	channels (I- bands), 16
M-10/I-3	1.61	moderate resolution
M-11	2.25	channels (M-bands)
M-12/I-4	3.74	and a
M-13	4.05	Dov/Night Bond (DNR)
M-14	8.55	Day/Night Band (DND)
M-15	10.76	
I-5	11.45	←─── 375 m IR window
M-16	12.01	
DNB	0.5-0.9	← Low-light visible

METImage Band	Central Wavelength (µm)		
VII-4	0.443		
VII-8	0.555		
VII-12	0.67		
VII-15	0.752	-	Dual bands
VII-16	0.763		to M6, but n
VII-17	0.865		V/NIR band
VII-20	0.914	-	vapor abso
VII-22	1.24		
VII-23	1.38		20 VIR/IR
VII-24	1.63		
VII-25	2.25		an at 500
VII-26	3.74		resolutior
VII-28	3.96		
VII-30	4.04		
VII-33	6.72	-	Upper- and
VII-34	7.33		vapor band
VII-35	8.54		
VII-37	10.69]	
VII-39	12.02	1	
VII-40	13.35	-	— "CO ₂ band"
		-	

s at similar wavelength not prone to saturation

d with some water orption

R channels Om spatial n

d Lower-level IR water ds

10

VIIRS and METIMage Data

Data volume estimates

VIIRS

~ 1.7 TB/day

1012 granules/day (86 seconds of data collection)

SDR Imagery:

5 I-bands (**6400x1536** pixels/granule) + I-band Ellipsoid + Terrain-corrected Geolocation 16 M-bands (**3200x768** pixels/granule) + M-band Ellipsoid + Terrain-corrected Geolocation DNB (**4064x768** pixels/granule)

EDR Imagery:

5 I-bands (**8241x1531** pixels/granule) + Geolocation 6 M-bands (**4121x771** pixels/granule) + Geolocation NCC (**4121x771** pixels/granule) + Geolocation

METImage

~250 GB/day

286 granules/day (5 min. 2 sec. of data collection)

20 bands (**4200x3144** pixels/granule) + Ellipsoid + Terrain-corrected Geolocation

From MetImage Proxy Data Review

METImage Proxy Data Review (2) EPS-SG

METImage simulated data (2007/09/12) shows that data gaps will exist near the Equator

JPSS/Metop-SG Project

VIIRS family tree

Legend:

- Top-left lettering represents the corresponding data box (e.g. V = VIIRS SDRs)
- Green shading = Matches Metop-SG requirements list
- Blue font = Specific product not listed at Metop-SG requirements

Microwave Sounder (MWS)

MWS Inter-comparison with Legacy Sensors

.OA	NESDIS Weather and Wenty ST	
Center	search	
for Sale	SOCD	

AMSU / MHS			ATMS			MWS		
Ch.	GHz	Pol.	Ch.	GHz	Pol.	Ch.	GHz	Pol.
1	23.8	QV	1	23.8	QV	1	23.8	QV
2	31.4	QV	2	31.4	QV	2	31.4	QV
3	50.3	QV	3	50.3	QH	3	50.3	QV
			4	51.76	QH			
4	52.8	QV	5	52.8	QH	4	52.8	QV
						5	53.246 ± 0.08	QH
5	53.595±0.115	QH	6	53.596±0.115	QH	6	53.596±0.115	QH
						7	53.948 ± 0.081	QH
6	54.4	QH	7	54.4	QH	8	54.4	QH
7	54.94	QV	8	54.94	QH	9	54.94	QV
8	55.50	QH	9	55.50	QH	10	55.50	QH
9	57.290344	QH	10	57.290344	QH	11	57.290344	QH
10	57.290344±0.217	QH	11	57.290344±0.217	QH	12	57.290344±0.217	QH
11	57.290344 ±0.3222±0.048	QH	12	57.290344 ±0.3222±0.048	QH	13	57.290344 ±0.3222±0.048	QH
12	57.290344±0.3222±0.022	QH	13	57.290344±0.3222±0.022	QH	14	57.290344±0.3222±0.022	QH
13	57.290344±0.3222±0.010	QH	14	57.290344±0.3222±0.010	QH	15	57.290344±0.3222±0.010	QH
14	57.290344±0.3222±0.0045	QH	15	57.290344±0.3222±0.0045	QH	16	57.290344±0.3222±0.0045	QH
15	89.0	QV						
16	89.0	QV	16	88.2	QV	17	89.0	QV
17	157.0	QV	17	165.5	QH	18	164-167	QV
18	183.311±1.0	QH	22	183.311±1.0	QH	23	183.311±1.0	QV
			21	183.31 ± 1.8	QH	22	183.311±1.8	QV
19	183.311±3.0	QH	20	183.311±3.0	QH	21	183.311±3.0	QV
			19	183.311±4.5	QH	20	183.311±4.5	QV
20	191.31	QV	18	183.311±7.0	QH	19	183.311±7.0	QV
				22 Channels		24	229	QV
	Exact match to AMSU/MHS						24 Channels	
	Only Polariza	tion different			Na a a d'an t		TO 4 T	
	Unique Passband Unique Passband, and Pol. di			8th IPWG and 5th	Accadia et a IWSSM Jo	ai. EUME int Works	15A1 shop, 3-7 October, 2016	

Unique Passband, and Pol. different from closest AMSU/MHS channels

ATMS ch. 4: 51.76 GHz

JPSS/MetOp-SG sensor inter-comparison (ATMS vs. MWS): **Scan Geometry**

Nadir

Scan Edge

39.6 km x 39.6 km Channels 1 and 2

67.6 km x 132.6 km

20.0 km x 20.0 km

Channels 3 to 16

34.2 km x 66.9 km

- Both MWS and ATMS are cross-track scanning •
- Scan positions: MWS=95, ATMS=96
- Scan angle range: MWS = ± 49.31 , ATMS = ± 52.73
- MWS channels 1 and 2 FOVs are significantly smaller than ATMS; this may preclude the need for resampling/footprint matching

Channels (MWS)	Nadir re (ki	solution m)	Edge of sca (k	an resolution (m)
	MWS	ATMS	MWS	ATMS
1-2	39.6 x 39.6	74.8 x 74.8	67.6 x132.6	141.8 x 323.1
3-16	20.0 x 20.0	31.6 x 31.6	34.2 x 66.9	60.0 x 136.7
17-24	17.0 x 17.0	15.8 x 15.8	29.0 x 56.7	30.0 x 68.4

Source: MWS L1B ATBD

EPS-SG STAR Product Requirements Review

MWS Proxy Data review

Examined the proxy data created by M. Liu from the original EUMETSAT proxy • data; new data have the correct channels, polarizations and scan configuration

MWS TBs are similar to ATMS at corresponding channels

-180 -150 -120 -90 -60 -30 30 60 90 120 150 180 0 Longitude

-180 -150 -120 -90 -60 -30 30 90 120 150 0 60 Longitude

150

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180 Longitude

Proxy Data review – Explore the new 229 GHz channel

- The 229 GHz frequency (channel 24) is sensitive to cloud ice and precipitation
- It appears to have stronger signal than other precipitation-sensitive channels

NOAA Microwave Integrated Retrieval System (MIRS)

MiRS produces 11 official operational products. Products derived from ATMS are validated according to JPSS requirements (JERD, JPSS-REQ-1004). Based on assessment of ATBD and other documentation, similarity of MWS with ATMS (see following slides) and other legacy sensors should allow MiRS MWS retrieval performance to meet JPSS requirements.

Observational Parameter	Imagery Product	Sounding Product	Core or Derived Product
Atmospheric Temperature profile (T)		Х	Core
Atmospheric Water Vapor profile (Q)		Х	Core
Total Precipitable Water (TPW)	X		Derived from retrieved profile
Land Surface Temperature (LST)	X		Core
Surface Emissivity Spectrum (Em)	X		Core
Sea-ice Concentration (SIC)	X		Derived from emissivity
Snow Cover Extent (SCE)	Х		Derived from emissivity
Snow-Water Equivalent (SWE)	Х		Derived from emissivity
Integrated Cloud Liquid Water (CLW)	Х		Derived from retrieved cloud profile
Rainfall Rate (RR)	Х		Derived from CLW, IWP, RWP
Snowfall Rate (SFR)	X		External algorithm

Infrared Atmospheric Sounding Interferometer-Next Generation (IASI-NG)

JPSS/MetOp-SG sensor Inter-comparison IASI-NG vs. IASI and CrIS

	CrIS	IASI	IASI-NG
Spectral Range And Spectral Resolution	650-1095, 1210-1750, 2155-2550 cm-1 0.625 cm-1	645-2760 cm-1 0.625 cm-1	645-2760 cm-1 0.125 cm-1
FOV Footprint	14 Km at Nadir	12 Km at Nadir	12 Km at Nadir
Number of FOVS for Field of Regard (FOR) Retrieval	3 x 3	2 x 2	4 x 4
Number of Channels	2211	8461	16,821

- With the increase in spectral resolution combined with reduced radiometric noise at least by a factor of 2 compared to IASI
- IASI-NG should be able to retrieve some additional trace gas products, and with a slightly improved accuracy than CrIS/IASI
- At a minimum, IASI-NG would produce products at least with comparable accuracy to CrIS and IASI.

The 1st 100 significant Eigen v actors from the operational NUCAPS regression train **2**g.

The NOAA Unique Combined Atmospheric Processing System (NUCAPS)

The NOAA Unique Combined Atmospheric Processing System (NUCAPS) is the NOAA operational hyper-spectral sounding product system to derive hyper-spectral radiance products, vertical profiles of temperature, water vapor, ozone, and six trace gas products (CO, CH4, CO2, Volcanic SO2, HNO3 and N2O). The algorithm has the heritage from the AIRS Science Team algorithm.

- NUCAPS runs within the Hyper-Spectral Enterprise Algorithm Package (HEAP) to operationally generate retrieval products from hyperspectral infrared instruments. Microwave sounder data are used to produce initial guess for the hyper-spectral IR sounding retrievals.
- NOAA/NESDIS/STAR has been operationally running NUCAPS since 2009 and distributing NUCAPS products in near real time to the science community through CLASS.
- NUCAPS has been operationally running on the CSPP/Direct Broadcast (DB) network
 producing near real time products for many regional applications.

IASI-NG Usage at NOAA

- We will use NOAA Unique Combined Atmospheric Processing System (NUCAPS) to generate NOAA products
 - NUCAPS retrievals are sent to forecast offices on NWS systems

Proxy Data Evaluation EUMETSAT - IASI Simulated Orbits

- Each granule contains 16921 wave numbers, incrementing at a rate of 0.125 m-1.
- IASI data is provided in 4x4 clusters (16 FOVs) for each FOR.
- There are 14 clusters per row, and up to 10 rows per granule.
- There are approximately 35-40 granules per orbit.
- The distance across near the equator is approximately 2100 km. This leads to an average resolution of 37.5 km, but it is unevenly spaced.

Proxy Data Evaluation EUMETSAT – IASI/MWS Overlay

- Zoom-in on two orbits: MWS with IASI overlay
- MWS CH #1/IR 900 cm-1
- September 12, 2007
- Dots are individual IASI simulated retrievals
- Next slide will focus on this area.

Microwave Imager (MWI)

Contributions from Ferraro

AMSR-2 and MWI sensor inter-comparison – Geometry

Property	AMSR2	EPS-SG
Swath width [km]	1450 km	1650 km
# of pixels per scan	486 @ high-freq.	630
Altitude	~705 km	~835 km
Sampling	Along track: ~ 10 km Along scan: ~ 5 – 10 km	Along track: ~ 8.5 km Along scan: ~ 3.3 km
FOV size [km]	5 – 60 km	10 – 50 km
Antenna size [cm]	200 cm	75 cm
Active portion of the scan	+/-61 deg	+/-65 deg
Observation Zenith Angle	55 deg	53 +/-2 deg
# of channels and freq.	14 (7 – 89 GHz)	26 (18 – 183 GHz)
Antenna rotation rate	40 rpm	45 rpm
Inclination	98 deg	Similar
Local obs time	1:30 am/pm	9:30 am/pm

MWI sensor Channels

	2	DORR DO AMOSPHERE
	EPS-S	Footprint
	(K)	(km)
	0.8 0.7	50
	0.9	
	1.1	30
	1.1	
	1.3	
nd,	4.0	40
,	1.2	10
	1.3	

1.2 1.2

1.2

1.3

Channel No	Frequency (GHz)	Bandwidth (MHz)	Utilization
MWI-1	18.7	200	Precipitation over sea
MWI-2	23.8	400	Total column water vapor over sea
MWI-3	31.4	200	Precipitation over sea and (marginally) land
MWI-4	50.3	400	
MWI-5	52.61	400	Precipitation over sea and land including drizzle,
MWI-6	53.24	400	snowfall, height and depth of the melting layer
MWI-7	53.75	400	
MWI-8	89	4000	Precipitation (sea & land) & snowfall
MWI-9*	118.7503±3.2	2 x 500	
MWI-10*	118.7503±2.1	2 x 400	Precipitation over sea and land including light
MWI-11*	118.7503±1.4	2 x 400	the melting layer
MWI-12*	118.7503±1.2	2 x 400	
MWI-13*	165.5±0.725	2 x 1350	Quasi-window, water-vapor profile, precipitation over lar snowfall
MWI-14*	183.31±8.4	2 x 2000	
MWI-15*	183.31±6.1	2 x 1500	
MWI-16*	183.31±4.9	2 x 1500	Water vapor profile and snowfall
MWI-17*	183.31±3.4	2 x 1500	
MWI-18*	183.31±2.0	2 x 1500	

90

Proxy Data review – three orbits TBs at 89 GHz

Brightness Temperature @ 89H GHz Date: 2007_9_12; Time: 10_22

89 GHz TBs - CONV_HD

Proxy Data review – 18 GHz H-pol and MSG2-SEVIRI

MWI Product Development at STAR

- Sampling will need to be addressed in order to meet JPSS products accuracy.
 - Level-1R may be required
- Some sensor-specific technical modifications will be required (e.g., creating new database for Precipitation Retrieval).
- AMSR2 channels at 6, 7, and 10 GHz (both V and H) are not present at EPS-SG MWI.
 - These channels are primarily used for Wind Speed, Soil Moisture and SST products but also contribute to sea ice concentration, wind speed, and rainfall retrievals.
 - While precipitation products should be able to compensate the lack of information content by relying on the available channels (18 GHz through 89 GHz), SST retrieval may see some challenges, and retrievals of Sea Surface Wind Speed and Soil Moisture are likely to be jeopardized.

Sentinel 5/UVNS

Sentinel 5 UVNS Sensor Characteristics

- Configuration: Push broom staring (non-scanning) in nadir viewing
- Swath width: 2 670 km
- Spatial sampling: 50x50 km²(UV1), 7.5x7.5 km² (all other channels),
- Spectral: 5 spectrometers (1 in UV1, 1 in UV2VIS, 1 in NIR, 2 in SWIR)
- Sentinel 5P (Precursor) TROPOMI currently flying in the same orbit as SNPP
- STAR routinely receives TROPOMI products and use them for air quality monitoring

Reusability of JPSS (or legacy) enterprise algorithms for MetOp-SG

- Several S5/UVNS products such as Ozone can be readily used by NESDIS
 - Aerosol Detection algorithm has been already applied to S5P TROPOMI (See Ciren, Kondragunta, Loyola presentation at the JSC meeting in Boston). This can be transitioned to TROPOMI. There is no official product from EUMETSAT or ESA. DLR has expressed interest in running our algorithm
 - Aerosol Index is derived as part of Aerosol Detection algorithm
 - New products from EUMETSAT that NOAA can use
 - CO (no heritage; CrIS is IR sounder)
 - Formaldehyde (no heritage; OMPS has some minimal capability)
 - Sulfur dioxide (no heritage; OMPS has some minimal capability)
 - Aerosol Layer Height (no heritage)

Operational TROPOMI UV Aerosol Index

- High value of TOPOMI UV Aerosol Index is associated with the presence of absorbing aerosol
- It works over bright surface, such as snow/ice and clouds, however, it is not able to differentiate between Smoke and dust.

TROPOMI COCOLUMN

SNPP NUCAPS CO COLUMN

STAR has gained tremendous experience in exploiting and using TROPOMI.

We will be using several EUMETSAT/ESA S5P products from day 1 after MetOP-SG launch 36

3MI: Multi-viewing, Multi-channel, Multipolarization Imager

Credit: ESA

Contributions from Laszlo

3MI: Multi-viewing, Multi-channel, Multi-polarization Imager

Viewing View#14 VIS a) Multi Same **SWIR** b)

Wide instantaneous field of view (IFOV)

- VNIR: 2200 ×2200 km² across-track (ACT) x along-track (ALT)
- SWIR: 2200 ×1100 km² ACTxALT
- Spatial resolution: 4 km
 - Grows to 5.5 km at the border and 9 km at the corner of the VNIR footprint.
- Data acquisition per band: every 22 s (VNIR), 11 s (SWIR).
- Number of angles: 14 (VNIR), 28 (SWIR)
 - Separation angle 9° (VNIR), 4.5° (SWIR)
- Heritage POLDER

Multi Polarization: 3 polarizers at -60°, 0° + 60° Multi-spectral (from 410 to 2130 nm) Multi-angular (14 views)

Proxy Data review – 3MI - Example

555-nm VISNIR (left) and 2130-nm SWIR (right) radiance (W m⁻² sr⁻¹ µm⁻¹) in Polarization Axis 1 (/)

3mi_00555 Radiance at 2007-09-12T08-43-03 Pol Axis: 1 View: 1

3mi_02130 Radiance at 2007-09-12T08-43-03 Pol Axis: 1 View: 1

Proxy Data review – 3MI - Example

555-nm VISNIR (left) and 2130-nm SWIR (right) radiance (W m⁻² sr⁻¹ µm⁻¹) in Polarization Axis 2 (Q)

3mi 00555 Radiance at 2007-09-12T08-43-03 Pol Axis: 2 View: 1

3mi 02130 Radiance at 2007-09-12T08-43-03 Pol Axis: 2 View: 1

Proxy Data review – 3MI - Example

555-nm VISNIR (left) and 2130-nm SWIR (right) radiance (W m⁻² sr⁻¹ µm⁻¹) in Polarization Axis 3 (U)

3mi_00555 Radiance at 2007-09-12T08-43-03 Pol Axis: 3 View: 1

3mi_02130 Radiance at 2007-09-12T08-43-03 Pol Axis: 3 View: 1

3MI Products from ESA

- Aerosol optical depths for accumulation, coarse and total modes at high horizontal resolution.
- Aerosol particle size for accumulation, coarse and total modes.
- Aerosol type through Ångström exponent, refractive index, nonsphericity index.
- Aerosol height index.
- Aerosol absorption
- Products from EUMETSAT can be readily used by NOAA by N42

Questions/Discussion