#### Error Assessments in the GNSS Radio Occultation Excess Phase/Bending Angle Calculation

Bin Zhang<sup>1</sup>, Shu-peng Ho<sup>2</sup>, Xi Shao<sup>1</sup> and

Changyong Cao<sup>2</sup>

<sup>1</sup>CISESS/ESSIC, University of Maryland, College Park, USA

<sup>2</sup> NOAA/STAR, College Park, USA

Nov. 12, 2019

# OUTLINE

- Introduction of GNSS Radio Occultation (RO)
- Global RO Profile Number monitoring in GDAS
- Recent COSMIC RO Data Quality issue
- RO Excess Phase Calculation
- RO Bending Angle Calculation
- Summary

## What is radio Occultation

- Radio occultation (RO)
  - a remote sensing technique used for measuring the physical properties of a planetary atmosphere or ring system.
- Atmospheric Radio Occultation
  - Atmospheric refractivity can change the path of a radio signal passing through.
  - Measuring a series of radio signal path changes can be used to derive the atmospheric refractivity index (related to temperature/humidity in troposphere or electron density in ionsphere).
- GNSS/GPS Radio Occultation
  - a type of radio occultation that relies on radio transmissions from GPS (Global Positioning System), or more generally from GNSS (Global Navigation Satellite System) satellites.
  - The technique involves a low-Earth orbit satellite receiving a signal from a GPS satellite. The signal has to pass through the atmosphere and gets refracted along the way
  - The relative position between the GPS satellite and the low-Earth orbit satellite changes over time, allowing for a vertical scanning of successive layers of the atmosphere for weather and climate study.
  - GPSRO observations can also be conducted from aircraft or on high mountaintops.



### How GNSS RO Works



## RO Observation Operationally Used in Numerical Weather Prediction

- RO derived bending angle/refractivity has been used in NWP as "bias anchor", no need for bias correction before data assimilation.
  - Atmosphere refractivity is related to temperature and humidity
  - From bending angle and impact parameters, the refractivity can be derived under spherical assumption of atmosphere.
  - Proper design of forward operators in the NWP model can ingest the bending angle to inverse the refractivity, temperature or waver vapor profiles.
- RO observations have observation impact among top 5.
- RO data have fine vertical resolution (~100m).
- RO observations are relatively cheaper
  - GPS receivers mounted on the small satellites or legacy satellites.
  - Similar design as your car GPS receiver, but more channels
  - High rate data recording

# **RO** Missions and Receivers

- Different GNSS missions with different GNSS RO Receivers
  - JPL BlackJak GPS receiver (CHAMP, GRACE).
  - IGOR/GOX on COSMIC, KOMPSAT-5
  - GRAS (MetOP), OMEGA4-G2(Novtel, Canada) PolarX2 (Septentrio, Belgium)
  - TriG (Tri-band GNSS Receiver, COSMIC-2), Polarimetric RO (PAZ)
  - Small SATs, Jason-CS, EPS-SG
- What information does the RO receiver provide?
  - High rate L1/L2 carrier phase Recording from occultation antenna.
    - 10-15 Hz for solving troposphere, 50Hz for COSMIC/KOMPSAT-5
  - Low rate data recording from POD antenna.
    - C/A pseudo range, L1/L2 carrier phases for orbit determination
  - GPS satellite broadcasting information (Position, clock)
  - LEO satellite navigation information (rough position, attitude)



PAZ is not in GDAS yet

#### Antenna GPS Signal SNR monitoring





FM-6 L1 SNR (ANT 4) has degradation (even below L2), only antenna ANT3 working normally

#### Bending Angle Difference (percent) between COSMIC and other RO Missions in GDAS



Percentage Difference between COSMIC FM-1(FM-6) and Other Satellites. Between height 10-30 km, mean BA difference <0.1%, oscillating between  $\pm 0.4\%$  (metopA/B on the order of 0.02%, in a range  $\pm 0.2\%$ ). Negative bias (referred to COSMIC) exists below 5km but with larger uncertainty.

# **Research Goals**

- NOAA/STAR recently launches Radio Occultation Cal/Val System for monitoring the quality of RO observation from different missions.
- One of the important issues is data quality check on various levels and understand its error source.
- The RO derived bending angle profiles from different processing centers/different missions always have bias.
- However, RO data processing from observations to Bending Angle are missing on site.
- This research is to establish the processing procedure from RO observations (carrier phase and time delay) to bending angle to understand different steps and identify possible error sources.

#### **Explanation of Carrier Phase**



Excess Doppler shift:  $f_d = \frac{d\Delta s}{dt}$   $f_d = \frac{f}{c} (V_T \cdot k_T - V_R \cdot k_R - (V_T - V_R) \cdot \vec{\gamma})$  $= \frac{f}{c} (v_T \cos(\theta_T - \beta_T) - v_R \cos(\theta_R - \beta_R) - (V_T - V_R) \cdot \vec{\gamma})$ 

> Only time derivative matters. Phase measurements needs locked.

# **Calculation of Excess Phase**



Dealing with Clock/time offsets:

- Zero Differencing (needs very stable clocks):
  - Using GNSS and LEO satellite Clock offset
- Single Differencing (needs second antenna):
  - Need second antenna to remove LEO clock error, noise increases
- Double differencing to remove GNSS clock error (needs multiple ground stations): Using ground station to remove GNSS clock error, noise increase

#### **Excess Phase Example**



**Raw Measurements: Carrier Phase** 

Processed Excess Phase: path delay passing atmosphere as function of time



### Error Sources in the excess Phase Model

- Accuracy of Position and Velocity of the satellite (transmitting and receiving antenna).
  - Cosmic generally about 10cm level (post processing).
  - Metop-A/B 5 cm level
  - IGS GNSS Orbit Products
    - Final(2.5cm, ~two weeks delay), Rapid(3.5 cm, ~1-2 days), Ultra-rapid (5cm, 3-9hours), broadcast (1m)
- GNSS/Leo satellite clock errors.
  - A few to hundred nano seconds, but very stable. (thinking of light speed).
  - Can affect the accurate determination of position/velocity
- Cycle slips in the time series, especially near surface
  - GPS signals are waves, the phase can be determined using replica oscillator on-board GPS receiver.
  - Using navigation bit series, time series demodulation and open-loop phase model
- Coordinate transformation Errors
  - Attitude error, ECEF/ECI transformation inconsistency
- Excess Phase Model
  - L1/L2 time series noise level
  - Numerical Scheme/Round off errors
  - L1/L2 ionosphere delay correction

#### Calculation of Excess Phase (Example)



#### **Excess Phase Difference Statistics**



- UCAR 637
- UMD 612
- 588 in common
- 9 outlier profiles

Although the mean bias is small, the standard deviation is still a bit bigger. Further improvements are needed. Errors can be from different sources: clock error, interpolation algorithm, position/vel errors, model errors, round off errors, coordinate conversions.

#### From Excess Phase to Bending Angle

#### What matters from observation

- Excess Doppler Shift
  - L1/L2 excess phase
  - Time derivative
  - Open loop/close loop
- SNR
  - Quality
- LEO/GNSS position/velocity
  - Antenna pos/vel

#### What matters in the inversion

- Geometric optical determination
  - Single path assumption
  - parameterization
- Wave optical determination
  - Atmospheric Multiple path
  - Open loop
  - From [time, phase] space to
    [bending angle, Height] space

- parameterization

Radio Occultation Processing Package (ROPP, Culverwell et al., 2015) has been used in testing.

- Errors Propagation from Excess Phase/Pos/Vel to Bending Angle
- Spherical symmetric assumption
- L1/L2 ionosphere correction (first order approximation)
- ECI coordinate transformation from ECEF (more artificial mistakes), Geolocation mismatch.
- Wave optics inversion algorithm(s) CT2 versus Full Spectrum Inversion
- Atmosphere multiple path effects
  - SNR cut off arbitrary

# **Bending Angle Comparison**



Metop-B compared with **COSMIC** in GDAS

0

**Bending Angle Profiles** Comparison (UMD vs UCAR)

Results are good but need improvements!

compared with UCAR

10

# Summary

- We have demonstrated the capability of processing of Radio Occultation observations from low level to bending angle, which mainly serve for better Cal/Val activities at NOAA for COSMIS-2, CWDP and KOMPSAT-5 as well as future missions.
- Though RO observations are 'bias anchor' for NWP model. However, products from different centers do have inter-mission, inter-center bias, especially on the lower troposphere. Only through understanding the processing procedure, we can understand the causes of the differences.
- These bias could be related to the following sources:
  - Position/velocity inaccuracy, attitude errors
  - Antenna offset /phase center specification
  - Cycle slip detection (esp. in the open loop stage).
  - Clock error from both Leo and GNSS satellites
  - Interpolation schemes, coordinate conversion
  - Operational versus reprocessing
    - Different accuracy in the IGS GNSS Orbit products, Earth Orientation Products
    - Not enough observations for accurate representation of the satellite orbits.
  - Each error term is evaluated in the processing procedure.