

Life Cycle of Precipitation Events over Orographic Regions

Saisidharth Seyyadri

Mentor: Malarvizhi Arulraj

Motivation

- Precipitation over mountain regions are highly varying in space and time.
- Understanding the life cycle of precipitation systems is critical - to study precipitation systems, better forecasts and monitoring capabilities.

Objectives

- Leverage high-resolution ground and satellite observations to study precipitation lifecycle.
- Investigate if there is any causal relationship between satellite observations with a lag and intense precipitation events.

Data

- Continuous rain observations from tipping-bucket gauges in the Smoky Mountain Region
- Brightness Temperature from Advanced Baseline Imager onboard GOES-16.

Study region - **Smoky Mountains**

Methods

- Identified continuous rainfall events from gauge data noted the start-time, duration, peak rain
- Each of these events are **matched with ABI Data** from 6-h before the start time to end time.

Life Cycle of Precipitation Events over Orographic Regions

Saisidharth Seyyadri

Mentor: Malarvizhi Arulraj

Continuous Rain Event Identification

Match Cloud
Top Properties
from satellite
with rain gauge
observations

(b) Peak Intensity vs. Duration

Results

- Found artifacts in the rain gauge data for events less than 2 hours [communicated to the developers].
- Identified different types of precipitation events from ABI warm/shallow events, cold/deep events and transition events

Future Work

 Use non-linear methods to identify relationship between cloud top properties and rain-rates.