

Darek Yu
Mentors: Xingming Liang

Objectives

- To improve the accuracy of predictions on atmosphere profiles using:
 - Residual Networks
 - Multi-output attention
 - Custom Weighted MSE Loss
- Show results and depict improvement between the current model and a basic model
- Compare current model with NOAA MiRS data product

Data Used

- Inputs: ATMS SDR and GEO fields:
 - Sensor Zenith Angle, Surface Pressure, ATMS BTs, latitude, and longitude
- Output labels: ECMWF fields collocated with ATMS SDR data at the pixel level
- Output: 91-layer temperature profile and 91-layer water vapor profile
- Data covers 2019 to 2020, one day per month, separated to training, test, and validations sets in a 8:1:1 ratio

Darek Yu
Mentors: Xingming Liang

Model Architecture

- The initial model for comparison is a simple 4-layer DNN Model that utilizes:
 - Batch Normalization
 - o Dropout
 - LeakyReLU
 - The proposed model utilizes these function as well as:
 - Residual Network
 - Adds shortcut connections that bypass one or more layers, allowing gradients to flow directly and enabling effective training of very deep networks.
 - Custom Weighted MSE
 - Automatically adjusts the loss weights of both the temperature and water vapor profile so that they converge at similar rates during training
 - Task Specific Output Heads
 - Splits outputs into Temperature and Water Vapor; further splits to 6-attentions to allow for more focused training in high error regions

Darek Yu
Mentors: Xingming Liang

Temperature Profile Results

- Since our model inputs and outputs are similar to the NOAA MiRS product (www.star.nesdis.noaa.gov/mirs/geonwp.php), we can roughly compare our model predicted T. and WV profiles with the MiRS retrieval results.
- Compared to the NOAA MIRs operational model we make significant improvements
 - For temperature standard deviation, our model stays below 1 for most altitudes, while the NOAA MiRs model always has Std Dev. >1
 - Our model stays noticeably closer to 0 and contains less divergence from 0 in bias
 - Our model predicts pressure levels up to pressures of 0 hPa while MiRs is limited to 100 hPa
- However, the evaluation results of the test set may not generalize to other dates; the model's generalization performance still needs investigation.

NOAA MiRs Model vs Proposed Model

Darek Yu
Mentors: Xingming Liang

Water Vapor Profile Results

- Compared to the NOAA MIRs operational model we make significant improvements
 - Our model has maximum STD error ~25% while the MiRs model reaches up to 45% STD error
 - Our model never exceed 3% mean bias error while the NOAA MiRs operational model exceeds 5% multiple times
 - Our model predicts pressure levels up to pressures of 0 hPa while MiRs is limited to 200 hPa

Conclusion

- Developed a model utilizing ResNet, dynamic loss weighting, and multi-output attention to predict atmosphere profiles utilizing ATMS and ECMWF data
- Model accuracy improved greatly when utilizing the ResNet and dynamic weight based model as compared to a simple 4-layer DNN Model
- By comparison, the current model is significantly more accurate than the NOAA MiRs operational model, but needs further validation using data from different dates

NOAA MiRs Model vs Proposed Model

