

UMBC			
A N	HONORS		
UN	IVERSITY		
I N	MARYLAND		

Dual-Doppler Lidar Wind Profiling in LUMEX

NOAA

REST

(The Lidar Uncertainty Measurement Experiment)

Brian Carroll¹

Aditya Choukulkar², Ruben Delgado³, Graham Antoszewski¹, Scott Sandberg⁴, Mike Hardesty², Alan Brewer⁴, Julie Lundquist⁵, Andreas Muschinski⁶

¹Atmospheric Physics Department, University of Maryland, Baltimore County
 ²Cooperative Institute for Environmental Sciences, Boulder
 ³Joint Center for Earth Systems Technology, University of Maryland, Baltimore County
 ⁴ Chemical Sciences Division, National Oceanic and Atmospheric Administration, Boulder
 ⁵ University of Colorado Boulder
 ⁶ NorthWest Research Associates, Inc.

CoRP 2015

Outline

- Doppler Lidar
 - Single and Dual Techniques
- The Lidar Uncertainty Measurement Experiment (LUMEX)
- Dual Doppler Analysis and Results
- Future Work

Heterodyne Doppler Lidar Systems

- "Light Detection And Ranging"
- Low-energy laser, typically infrared
- Measure wind speed along the line of sight by observing the Doppler effect frequency-shifted backscattered photons

Single Doppler Lidar Wind Retrieval

Thorough scanning is necessary to build a multi-dimensional wind profile with only one lidar.

 Vary azimuth with constant elevation

Dual-Doppler Scanning

Principle is well established with radar

 Two Doppler lidars, not co-located, simultaneously observing the same point in space

$$\begin{pmatrix} v_{r\,1} \\ v_{r\,2} \end{pmatrix} = \begin{pmatrix} \cos(\theta_1)\sin(\phi_1) & \cos(\theta_1)\cos(\phi_1) & \sin(\theta_1) \\ \cos(\theta_2)\sin(\phi_2) & \cos(\theta_2)\cos(\phi_2) & \sin(\theta_2) \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$

• v_r is radial velocity, ϕ azimuth, θ elevation

Assume w is negligible

$$\begin{split} u &= \frac{1}{\sin(\phi_1 - \phi_2)} \left(\frac{v_{r\,1}\cos(\phi_2)}{\cos(\theta_1)} - \frac{v_{r\,2}\cos(\phi_1)}{\cos(\theta_2)} \right) \\ v &= \frac{1}{\sin(\phi_1 - \phi_2)} \left(\frac{v_{r\,2}\cos(\phi_1)}{\cos(\theta_2)} - \frac{v_{r\,1}\cos(\phi_2)}{\cos(\theta_1)} \right) \end{split}$$

Advantages

Credit: Vattenfall

Small spatial footprintVariable bin sizes

- Small temporal footprintVariable scan rate
- "Virtual towers"
 - Can take measurements
 centered over hard-to-reach
 places
 - Wind turbine applications

LUMEX

- Dual-Doppler phase
 July 1 13, 2014
- Boulder Atmospheric
 Observatory (BAO)

Lower Right Image Credit: Cooperative Institute for Research in Environmental Sciences

LUMEX

<u>Major Goals of LUMEX:</u>

- Characterize sampling error of vertical velocity statistics
- Analyze sensitivities of different Doppler lidar systems
- Validation and comparison of turbulence analysis techniques with Doppler lidar
- Characterize error of spatial representativeness for separation distances up to 3 km
- Validate and improve various methods of single and dual Doppler wind profile retrieval

Dual-Doppler in LUMEX

Lidar Parameters	HRDL	200 s
Wavelength (µm)	2.02	1.54
Pulse Energy (mJ)	1.5	0.1
Pulse Rate (Hz)	200	10 000
Accumulation Time (s)	0.5	1
Range Resolution (m)	30	50
Minimum Range (km)	0.2	0.1
Typical Max Range (km)	3	3

 Multiple virtual tower sites and scan styles employed to observe dependence on intersection angle and dwell time

Dual-Doppler and Reference Data

WC Profile

D-D Profile

Error Characterizations

Biases

 Medians and Standard Deviations of the absolute difference over each data pair

$$y = \frac{\sum_{1}^{N} |x_{dd} - x_{ref}|}{N}$$
$$\sigma = \sqrt{\frac{\sum_{1}^{N} (y_i - \overline{y})^2}{N}}$$

No dependence of accuracy on altitude was found. This validates the assumption of w = 0 for the experiment in general.

Bias plots, July 1 - 6

July 1 - 6

Dual-Doppler Comparison	Median Absolute Difference (m/s)	Standard Deviation (m/s)
BAO u	1.31	1.77
BAO v	0.73	0.90
BAO horizontal wind	1.01	1.25
BAO horizontal direction	12.3°	19.2°
WINDCUBE u	0.46	0.97
WINDCUBE v	0.47	0.92
WINDCUBE wind speed	0.47	0.70
WINDCUBE wind direction	6.4°	17.1°

After filters were applied, these statistics were calculated from 1025 BAO comparisons and 2058 WINDCUBE comparisons.

Favorable Conditions - BAO Wind Speed

Future Work

- Improve the understanding of intersection angle dependence by analyzing the third virtual tower results.
- Quantify the benefits of longer dwell time at a single virtual tower

- Increased effectiveness and accuracy of our future dual-Doppler experiments
- Completing the other goals of LUMEX
 - Characterizing the uncertainty of a wide variety of Doppler lidar retrievals

Questions?

NOAP

Photo Credits: Scott Sandberg, Raymond Hoff

Acknowledgements

NOAA Office of Education

EARTH SYSTEM RESEARCH LABORATOR

- NOAA-CREST/CCNY Foundation CREST Grant -NA11SEC481004.3
- Leosphere/Renewable NRG Systems