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Introducing some

terminology




This presentation will refer to detection and forecasting

models throughout.

Identification or classification of historical severe

Detection storm events based on non-storm data (like
temperature, pressure, humidity, etc.).
. Prediction of future severe storm events using
Forecasting

historical storm data.




Statistical vs. ML classifiens

Both the detection and forecasting models use some sort of
classifier to understand complex relationships between input data.
There are two main variants of classifiers commonly used for
detection or forecasting models:

Statistical classifiers

Use statistical inference techniques to detect
correlation between input datasets. A simple
example of a statistical classifier is linear
regression.

Machine learning
classifiers

Use some form of machine learning model to
compute weights (for example, using

backpropagation) which determine predictive
relationships.



https://en.wikipedia.org/wiki/Backpropagation
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Below shows the types of classifiers used in the detection
and forecasting models.
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The architecture of the detection model is inspired by the
model from this landslide detection paper. Specifically, the
model first encodes spatial input through a two-step
process:

1. The number of spatial channels is reduced to the
effective dimension of the channel and the reduced
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input data is then fed into a classifier like an NRF or SVM.

The spatial inputs for this version of the model are the
precipitation, wind direction, and wind velocity, extracted
from Google Earth Engine. These inputs can be extended
easily to other datasets.



https://www.sciencedirect.com/science/article/pii/S0303243422000071
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Concatenation
Combine the two
branches to create a
unified feature map



https://www.sciencedirect.com/science/article/pii/S0303243422000071
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Encoded data is not immediately useful unless it is run through certain processes to extract the

desired output. There are two main ways of doing this and they are not mutually exclusive.
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Biomedical
imaging model
used for
classification

Deep
Convolutional
Neural Network

Residual U-Net;
novel approach
to semantic
segmentation

U-Net

DCNN

ResUNet

Decoding

Taking encoded data which does
not contain any immediately
discernible data and extracting
useful information

C/a/éé%l/l;ng/

Taking spatial data and
classifying it using certain

algorithms

Naive
Bayes

NRF

RBF-
SVM

Classification
technique based
on Bayesian
probability

Differentiable
form of a
Random

Forest

Radial Basis
Function kernel
of a Support
Vector Machine



eleclion medel - anchileclure

Detection Model

ML Classifier
Encoder

T eessaaaaa. SVM

. ve Bayes
Input Preperation Save ayes

Response Features

Data Preprocessing Inputs

Channel-Wise

X oy & 7 —p Fully-Connected Linear |
Spatial Pyrmaid Pooling ’ A\
/'_’ Y =% Concatenation ) Reshape Concatenate
Spatial Features

S Fully-Connected Seperable CNN / it it
N ————————— Depthwise CNN # Pointwise CNN ———————» Spatial Pyrmaid Pooling ment-wise
Multiplication |
- G L e » U-NET

Google Earth Engine

Decoder

_— SP Resolution Downsampling
Domain resctriction 3 Temporal Features
APl = Timestamp conversion A =—mname .—__’_’_’_’,_«.poti-'ant\_b ---------------- » | RelNet

» Floordiv Scale Equation # Reshape

fo- S SESCRRRE »| | RelUnet

§ prsefseesntsscuaccacctsasusacancansansesnnsnssencasncasssnacanassssancasalessioancasascsens » Radial Basis
% remainder

Sernees P  RF-UNET upsample

R S J-NET derivatives







OB

2

RNRNE

RN EE LY

Anyone who has tried to plan vacations around weather
forecasts knows the difficulty of forecasting storms
accurately. This difficulty arises from the chaotic, innate
dynamics of low-pressure wedther systems:

e The general evolution of storm systems is described by
fluid dynamics accounting for turbulence and rotation.
This is notoriously difficult physics - even the case
without rotation or turbulence is an open question.

e But we don't need to predict the evolution of the entire
atmosphere, we just need a rough estimate that's
approximately right one the order of weeks in the future.
Unfortunately, even this is a difficult task due to the
massive number of factors that can impact weather.

To deal with these issues, a more exotic solution was
required for the forecasting model.


https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_existence_and_smoothness

A novel machine learning model was developed for
forecasting - a combination of a traditional convolutional
neural network and an LSTM, called a ConvLSTM, modified
significantly to accommodate storm input data.

The model is designed in a complex fashion to capture
complex spatiotemporaral interactions between the input
data.



D ala Wmﬁm . SPC Storm Reports for 04/06/06
; | _Map updated at 1202Z on Ofm 3!06 |

The data for the forecasting model is
taken from NOAA historical storm reports,
In the form of CSV files of coordinates. The
database provides historical reports of
severe tornado, wind, and hail events in
the continental US, shown on the right.

Regions of input were then generated by
constructing and filling alpha-shapes
around the storm coordinates in a

recursive manner (more on this later). TORNADO REPORTS.. (22)

HAIL REPORTSAG..... (187/3)

A Large Hall Report (2" dia. +
TOTAL REPORTS {252) 9 port ( )

' WIND REPORTS/MI..... (43/2) . = High Wind Report (BSKT +)

The full data preparation process is shown | i
in the fo”owing SlideS. yﬁ:tllrtr’l??lre u%erz ?:rrft'gf Norma_n Oklahoma ".PRELIMlNARY DATA ONLY Y


https://www.spc.noaa.gov/exper/archive/event.php?date=20060406

Dot Precessing (1)

CSV Extraction Reading Alpha-shape Uniform Filling
Computation
Through In data into a Finds a concave hull Create a uniform
DownThemaAll! dictionary to represent the distribution of points

data iIn a bounding box



Dalo P/wce/sséngu (2)

Contain filter

Through
DownThemAll!

Populate BBox

In data into a
dictionary

Rounding

Round all contained
with precision
sigfig=1

Indexing

Convert point
coordinates into array
indices and populate
them with one or true



Dalo P/wce/sséngu (3)

Parsing dates Regressing data Splitting data Dumping

Converting datetimes Precomputing Into training and Pickling data into a
into a deltatime into previous data for testing via sklearn’s tuple of information
a numeric value of initial conditions train_test_split for later use

days



HAlpha shape construclion

e Alpha-shapes are bounding polygons
that enclose coordinates

e An alpha-shape is constructed by
Delaunay triangulating the data,

finding the local circumcircle of each
vertex, and filtering the circumradii
such that they are no more than 1/a

e Alpha-shapes were chosen for their
customizability and as a
middle-ground between convex hulls
and MSTs

e To accommodate for degenerate data
cases (some days have many storms,
some have none) a novel, recursive \ C
method was written that recursively |
decrements the parameter a to
produce a descriptive alpha-shape @
regardless of data density o




(&), A, &) : shape(X;) = (h,w)

After all is said and done, we can now feed

1 _ (3, h,w, 1)
jche processed and filled olpho shape data T e )
into a ConvLSTM model as input. The full (3, b ,3)

model architecture is shown on the right.

(21,22, Zy) : shape(Z;) = (h,w) ConvL.STM2D

e Note that the spatial data is fed through

several convolutional LSTM layers and

then merged with the original datetime

data. This allows for the preservation of
spatiotemporal relationships T

e The model takes the last three days of
tornado, wind, and hail data to produce

o o N (o, w,3)
predicted regions of tornado, wind, and .
nai




Torn loss Hail loss  Wind loss Torn acc Hail acc Wind acc
; H.8032 ).7T18 9.6077 0.0145 0.002. 256!
The forecasting model has been successfully _ o e i
: C e ] . 5.1505 (.7325 9438 0.0172 4528 - 10 (.3877
run and early metrics indicate it is quite : 50135 0.7307 88987 00232 2.37 0.5717

- 19628 0.7298 88573 0.0837 2. 05815
accurate. ’ ‘ = : el

().7292 8.8176 0.3672 7095 - 107 0.6742

Table 1: Training

To the right are the loss/accuracy tables for
the training and validation data over five

. o Torn loss  Hail loss  Wind loss Torn ace
epochs. The model stabilizes at around 70% 6.5738 0.6747 11.6576  2.2999 - 10~ 5 ().7960
validation accuracy for tornado and wind, but : 6.2969 0.6785 10.9007 0.0015 3.2855 0.7217
: 5.2992 0.6918 9.4190 0.0098 1.4934 ().6887

only manages 0% for hail.

0.7359 9.3074 0.6740 1.7095 (.7142
0.7505 9.2296 0.6950) '

l'able 2: Validation




?waca/sw medel - nesults (2)

Here is a sample of predicted regions.

e On the far right are three predicted regions
for tornado, hail, and wind. To the left are
four pictures - the top left, top right, and
bottom left are the previous three days of
data, and the bottom right is the actual
data.

e All three predicted regions strangely have
the same shape, with cycling confidence
levels. This may be because of the merging
that was done in the model.

e Despite this spatial redundancy, the
tornado and wind predictions line up quite
well with the actual data. We can now see
that the hail suffers because the entire
background region gets cycled to high
confidence.
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1.

Models were constructed to detect and forecast
severe storm events. Both used elements of machine
learning and/or statistical inference to establish
spatiotemporal patterns.

Novel technigues to process weather data (separable
CNNs and alpha shape processing) were developed.
Novel model architectures for storm
detection/forecasting (modified ConvLSTM) were
developed.

The forecasting model was successfully run and
despite spatial redundancy was shown to achieve
surprisingly high accuracy.



[o ds-
1. Eliminate spatial redundancy in forecasting model. @\

a. Could be done by switching to a tripartite model
that does not merge the input data
2. Successfully run detection model.
3. Adjust hyperparameters (batch size, filter number,
etc.) to maximize forecasting and detection accuracy:.
4. Improve existing documentation to facilitate usability
and adaptability for other future users.

V=

5. Incorporate other datasets like precipitation and wind )
velocity to forecasting model to further bolster / \\
\\ ) nf
N (=

accuracy.
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(Conclusisn

Detecting and forecasting severe storm events is a difficult
but highly important task. Hundreds of Americans are killed
by severe storms every year and thousands more are
displaced or injured by them. With continued research into
the field of storm prediction, we hope to get closer to solving

this task.







