CICS Science Conference November 29 – December 1, 2016

Impacts of AHI Radiance Assimilation on Quantitative Precipitation Forecasts over Eastern China

Xiaolei Zou

Earth System Science Interdisciplinary Center University of Maryland

Outline

- A Brief Description of Data Assimilation
- Infrared Only Cloud Detection
- Bias Estimate over Ocean and Land
- Impacts of AHI Data Assimilation on QPFs
- Summary and Conclusions
- Future Work

What are Important for Satellite Data Assimilation?

- Cloud Detection
- Bias Estimate

Clear Radiance

3

The success of satellite DA of any instruments requires the science of satellite data be effectively integrated into a DA system and the results from the DA system be carefully analyzed and interpreted.

GOES-13/15 Imager, GOES-R ABI and Himawari-8 AHI

GOES-13/15

GOES-R

Launched on November 19, 2016

Himawari-8/-9

Himawari-8: Launched on October 7, 2014 Himawari-9: Launched on November 2, 2016

5 channels: 1 visible channel

4 infrared channels

16 channels:6 visible and NIR channels10 infrared channels

16 channels:6 visible and NIR channels10 infrared channels

4

	ABI #	ABI Freq. (µm)	AHI #	AHI Freq. (μm)	GOES #	GOES Freq. (µm)
	1	0.47	1	0.47	1	0.65
	2	0.64	2	0.51		
L	3	0.865	3	0.64		
	4	1.378	4	0.86		
	5	1.61	5	1.60		
	6	2.25	6	2.30		
	7	3.90	7	3.90	2	3.90
	8	6.185	8	6.20		
	9	6.95	9	6.90	3	6.55
	10	7.34	10	7.30		
	11	8.50	11	8.60		
	12	9.61	12	9.60		
	13	10.35	13	10.40		
	14	11.20	14	11.20	4	10.70
	15	12.30	15	12.40	5	12.0
	16	13.30	16	13.30	6	13.35

ABI, AHI to Imager Channel Frequency Comparison

Himawari-8 AHI Infrared Channels 7-16 for DA

Channel Number	Central Wavelength	Contribution	
7	3.9 µm	Atmospheric windows	
8	6.2 µm	Water Vapor	
9	6.9 µm		
10	7.3 µm		
11	8.6 µm	SO ₂	
12	9.6 µm	O ₃	
13	10.4 µm	Atmospheric windows	
14	11.2 μm		
15	12.4 μm		
16	13.3 µm	CO ₂	

AHI channels 7, 9, 13 and 16 are similar to GOES imager channels 2, 3, 4 and 6. 6

http://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/spsg_ahi.html

A Modified Infrared Only ABI Cloud Mask Algorithm

Ten Cloud Mask (CM) Tests

- 1. Relative Thermal Contrast Test (RTCT)
- 2. Emissivity at Tropopause Test (ETROP)
- 3. Positive Fourteen Minus Fifteen Test (PFMFT)
- 4. Negative Fourteen Minus Fifteen Test (NFMFT)
- 5. Relative Fourteen Minus Fifteen Test (RFMFT)
- 6. Cirrus Water Vapor Test (CIRH2O)
- 7. Modified Uniform Low Stratus test (M-ULST)
- 8. Temporal Infrared Test (TEMPIR)
- 9. Modified 4 µm Emissivity Test (M-EMISS4)10.New Optically Thin Cloud Test (N-OTC)

adopted from the ABI CM algorithm (*Heidinger and Straka III* 2013)

newly added CM

Zhuge, X. and X. Zou, 2016:Test of a modified infrared only ABI cloud mask algorithm for AHI radiance observations. *J. App. Meteor. Climatol.*, 55, 2529-2546. doi: 10.1175/JAMC-D-16-0254.1.

Modified 4 µm Emissivity Test (M-EMISS4)

Channel 7

Cloudy Pixels

An area populated with cloudy pixels was successfully identified by M-EMISS4 over a sun-glint area located to the west of Australia at 0900 UTC 15 December 2015.

Modified 4 µm Emissivity Test (M-EMISS4)

Typhoon Dujuan (2015)

Cloud Types

Optically thin clouds (cirrus, fog) are successfully flagged as cloudy by the newly added nighttime N-OTC CM test.

A Snapshot of AHI Observations at 0300 UTC 22 September 2015

Albedo_{ch3} (0.64 µm)

> Cloud Types

Clear-sky AHI pixels

AHI Spectral Response Functions and ECMWF Specific Humidity

Spatial Coverage of Clear-sky AHI Pixels and Biases

• ECMWF analysis

Six hourly (0300, 0900, 1500, 2100 UTC) Horizontal resolution: 0.25°x0.25°

• AHI 10-minutes, 2-km data on

22-24 September 201520-22 March 201615-17 December 20155 - 7 June 2016

Spatial Coverage of Clear-sky AHI Pixels and Biases

Zou, X., X. Zhuge, and F. Weng, 2016: Characterization of bias of Advanced Himawari Imager infrared observations from NWP background simulations using CRTM and RTTOV. J. Ocean Atmos. Tech., 33, 2553-2567.

Impact of Spectral Response Function on Channel 16 Bias

Model Domain and DA Cycling

500 hPa Geopotential Relative humidity 0000 UTC 02/07/16

15 km resolution Grid size: 400x250x43 Model top: 50 hPa LBC: NCEP FNL AHI thinning: 75 km

12

Convergence of AHI Data Assimilation Minimization

Convergence of Assimilating AHI Channels 7-16

500 hPa Temperature, Geopotential and Relative Humidity

0600 UTC 1 July 2016 (starting time of DA cycle)

Forecast Differences of Water Vapor Mixing Ratio at 750 hPa

125E

130E

105E

Impacts of AHI Data Assimilation on QPFs

39-42 hours forecasts

1500-1800 UTC July 3, 2016

Impacts of AHI Data Assimilation on QPFs

- Assimilation of AHI surface sensitive channels (AHIS) improves QPFs, especially the weak precipitation
- Assimilation of AHI water vapor and surface sensitive channels (AHIA) further improves QPFs of heavy precipitation

CONV

AHIS

Three-hourly Accumulative Rainfall 1500-1800 UTC July 3, 2016

500 hPa T (red), Φ (black), relative humidity (shading) Observations 45N 40N 40N-35N-35N-30N-30N-25N->80% 25N >90% 20N 20N 115E 120E 105E 110E 125E 20 15N 80E 90E 100E 110E 120E 130E Without AHI AHI Surface Channels Only All AHI channels 40N 40N 40N 35N 35N-35N 30N-30N 30N 25N 25N 25N 20N 20N

105E

110E

115E

120E

125E

105E

110E

20N

105E

110E

115E

120E

120E

125E

115E

22

125E

Sensitivity of QPFs to AHI Water Vapor Channels

Adding a single water vapor channel to AHI surface channels DA

- Surface channels improve weak precipitation forecasts.
- Channels 8 and 10 improve further the forecasts of strong precipitation.

Sensitivity of QPFs to AHI Water Vapor Channels

Taking away a single water vapor channel from all AHI channels DA

- Channels 8 and 10 together contribute the most to QPFs especially during the first 24 h.
- Assimilating channels 8 and 9 together produces the least improvement to QPFs.

Summary and Conclusions

- AHI radiance data biases are estimated with respect to ECMWF analysis. AHI O-B biases are generally smaller than ± 0.5 K over ocean in clear-sky conditions
- Biases of channels 8-10, 12 and 16 with CRTM have a large jump when satellite zenith angle increases to more than 62°
- A slight scene dependence of bias is found in all AHI channels
- CRTM and RTTOV perform equally well over ocean
- There exist large differences between CRTM and RTTOV for radiance simulations of surface channels over land
- AHI data assimilation improved significantly the 12-48 hours QPFs over China

Future Work

- Improve CRTM simulation for AHI surface channels by taking into account of the surface type, and quantify separately the O-B biases according to different surface conditions
- Complete the comparison between CRTM and RTTOV simulations
- Develop and implement an effective cloud detection algorithm for the assimilation of the new AHI channels for NWP models
- Assess impacts of AHI radiance data assimilation on hurricane track and intensity forecasts using HWRF

More details can be found in

Zou, X., X. Zhuge, and F. Weng, 2016: Characterization of bias of Advanced Himawari Imager infrared observations from NWP background simulations using CRTM and RTTOV. J. Ocean Atmos. Tech., 33, 2553-2567.

Zhuge, X. and X. Zou, 2016: Test of a modified infrared only ABI cloud mask algorithm for AHI radiance observations. J. App. Meteor. Climatol., 55, 2529-2546.

Qin, Z., X. Zou, and F. Weng, 2016: Impacts of AHI Radiance Assimilation on Quantitative Precipitation Forecasts over Eastern China. J. App. Meteor. Climatol., (submitted)

Future Work

- An "Optimal" Data Thinning
- More Cases
- ABI Data Assimilation