CISESS Science Meeting College Park, Nov 2019

Predicting GLM Flash Rate Class: Deep Neural Network Approach

Veljko Petković, Ralph Ferraro

Ting-Chi Wu and Milija Zupanski

Objectives

- The overall objective
 - <u>Goal</u>: Improve hurricane forecast by assimilating GLM observations
 - <u>Challenge</u>: GLM observed features (e.g. flash rate) are not common model parameters
 - <u>Solution</u>: Use a *link* between existing model parameters and GLM observations
- Project objective
 - Build a representation of the link between model parameters and GLM observations

Predict GLM flash rate using h-WRF output

Deep Neural Network Model

Data

Predictors (features) – HWRF output

3-D features

- Total condensate
- Total ice content
- Rime factor
- Specific humidity
- Cloud water mix ratio
- Ice mix ratio
- Snow mix ratio
- Water vapor mix ratio
- Vertical velocity
- Super-cooled liquid water flag

2-D features

- Accumulated precip
- Instantaneous convective precip
- Accumulated convective precip
- $_{\circ}~$ Top of conv. levels
- Richardson number
- updraft fractions
- $_{\circ}~$ Max vert wind @ 400 mb
- $_{\circ}$ potential t
- \circ 10m wind

Predictands (labels) – GLM observations

Flash Classes

- 2 classes: yes/no lightning
- 3 classes: no-, low-, high-flash rate
- 4 classes: no-, low-, moderate-, high-flash rate

Flash Rate

。 Flash rate

- Note: All mixing ratios here are totaled accounting for deltapressure but not weighted for geopotential
- Hail is often completely missing
- Graupel is slightly better but still questionable in sense how much it correlates with the FR value

Longitude

Snow Mass Mixing Ratio (HWRF grid)

Training dataset – Relating HWRF output and GLM observations –

Deep Neural Network Model

2D Convolutional Neural Network model

Results and Summary

- Focus was on construction of a flexible DNN system. Developed are:
 - Input pipeline (flexibility to ingest any number of input features of multiple dimensions)
 - Model architectures: Fully Connected and CNN
 - Inference models (for testing the results on independent datasets)
- Initial result for the 2-class experiment (yes/no lightning) stands at overall accuracy of 60% with probability of 70% to correctly detect lightning when occurred.
- Currently performed tests on multiple class tasks suggest that models are generally biased towards no-lightning or low-lightning class.

