Predicting GLM Flash Rate Class: Deep Neural Network Approach

Veljko Petković, Ralph Ferraro

Ting-Chi Wu and Milija Zupanski
Objectives

• The overall objective
 • Goal: Improve hurricane forecast by assimilating GLM observations
 • Challenge: GLM observed features (e.g. flash rate) are not common model parameters
 • Solution: Use a link between existing model parameters and GLM observations

• Project objective
 • Build a representation of the link between model parameters and GLM observations

Predict GLM flash rate using h-WRF output
Deep Neural Network Model

Activation Function

Sigmoid
$$\sigma(x) = \frac{1}{1+e^{-x}}$$

tanh
$$\tanh(x)$$

ReLU
$$\max(0, x)$$

Leaky ReLU
$$\max(0.1x, x)$$

Maxout
$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU
$$\begin{cases} x & x \geq 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$
Data

• Predictors (features) – HWRF output

 3-D features
 o Total condensate
 o Total ice content
 o Rime factor
 o Specific humidity
 o Cloud water mix ratio
 o Ice mix ratio
 o Snow mix ratio
 o Water vapor mix ratio
 o Vertical velocity
 o Super-cooled liquid water flag

 2-D features
 o Accumulated precip
 o Instantaneous convective precip
 o Accumulated convective precip
 o Top of conv. levels
 o Richardson number
 o updraft fractions
 o Max vert wind @ 400 mb
 o potential t
 o 10m wind

• Predictands (labels) – GLM observations

 Flash Classes
 o 2 classes: yes/no lightning
 o 3 classes: no-, low-, high-flash rate
 o 4 classes: no-, low-, moderate-, high-flash rate

 Flash Rate
 o Flash rate
• Note: All mixing ratios here are totaled accounting for delta-pressure but not weighted for geopotential
• Hail is often completely missing
• Graupel is slightly better but still questionable in sense how much it correlates with the FR value
Normalized HWRF Total Column Ice
Florence 20180903 0600 UTC

Normalized GLM Observed Flash Rate
Florence 20180903 0600 UTC
Training dataset
– Relating HWRF output and GLM observations –

Hwrf Output
Normalized HWRF Total Column Ice
Florence 20180903 0600 UTC

GLM obs
Normalized GLM Observed Flash Rate
Florence 20180903 0600 UTC

Lon: -72.16 Lat: 29.34

Lon: -35.61 Lat: 18.67
Deep Neural Network Model

2D Convolutional Neural Network model

CNN Architecture: (51, 51, 24)
Total params: 402,178
Trainable params: 400,898
Results and Summary

- Focus was on construction of a flexible DNN system. Developed are:
 - Input pipeline (flexibility to ingest any number of input features of multiple dimensions)
 - Model architectures: Fully Connected and CNN
 - Inference models (for testing the results on independent datasets)

- Initial result for the 2-class experiment (yes/no lightning) stands at overall accuracy of 60% with probability of 70% to correctly detect lightning when occurred.

- Currently performed tests on multiple class tasks suggest that models are generally biased towards no-lightning or low-lightning class.

<table>
<thead>
<tr>
<th>True</th>
<th>Low</th>
<th>Mod</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>74</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Mod</td>
<td>64</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>High</td>
<td>52</td>
<td>11</td>
<td>37</td>
</tr>
</tbody>
</table>

2-class Accuracy

<table>
<thead>
<tr>
<th>True</th>
<th>No-lightning</th>
<th>Lightning</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-lightning</td>
<td>0.47</td>
<td>0.53</td>
</tr>
<tr>
<td>Lightning</td>
<td>0.31</td>
<td>0.69</td>
</tr>
</tbody>
</table>

3-class Accuracy [%]