

In-Orbit Radiometric Calibration Accuracy of GOES-16/17 Advanced Baseline Imager (ABI)

Fangfang Yu¹, Xiangqian Wu², Hyelim Yoo¹, Haifeng Qian¹, Zhipeng Wang¹, Xi Shao¹, Vladimir Kondratovich¹, and Song Guo¹

1: University of Maryland, 2: NOAA/NESDIS/STAR

Acknowledgements: Previous CWG team members, GOES-R AWG Team, GOES-R Flight Team, GOES-R Program Office, GOES-R MOST Team, GRATDAT Team, MIT/Lincoln Laboratory, and NOAA OSPO Engineers etc.

GOES-16/17

- NOAA's new generation operational weather satellites at the geostationary orbit
 - Advanced Baseline Imager (ABI) is the primary payload
- GOES-16: GOES-East at 75.2°W
 - Launched on 19 November 2016, became operational as GOES-East on 18 December 2017
- GOES-17: GOES-West at 137.2°W
 - Launched on 1 March 2018, became operational as GOES-West on 12 Feb 2019.

Advanced Baseline Imager (ABI)

- ABI Bands: 16 bands
 - 6 visible and near-infrared (NVIR) bands
 - 10 infrared (IR) bands
- Two independent scan mirrors
 - North-South (NS)
 - East-West (EW)
- On-orbit calibration for all the bands
 - On-orbit solar diffuser (SD) for VNIR bands
 - Blackbody for IR bands

Compared to precedent Imager, many advanced technology and new algorithm implemented to improve the spectral/radiometric/navigation accuracy to higher levels

ABI Optical Architecture

ABI Bands

- **ABI Bands:** •
 - **6 VNIR bands** ____

- 10 infrared (IR) bands

Band	FMP	Central Wvlen (μm)	IFOV EW (urad)	IFOV NS (urad)	Columns	Rows
1	VNIR	0.47	22.9	22.9	3	676
2		0.64	12.4	10.5	3	1460
3		0.87	22.9	22.9	3	676
4		1.38	51.5	42.0	6	372
5		1.61	22.9	22.9	6	676
6		2.25	51.5	42.0	6	372
7	MWIR	3.9	51.5	47.7	6	332
8		6.2	51.5	47.7	6	332
9		6.9	51.5	47.7	6	332
10		7.3	51.5	47.7	6	332
11		8.5	51.5	47.7	6	332
12	LWIR	9.6	51.5	47.7	6	332
13		10.4	34.3	38.1	6	408
14		11.2	34.3	38.1	6	408
15		12.3	34.3	38.1	6	408
16		13.3	34.3	38.1	6	408

w-

ABI focal plane modules

Hundreds to thousands of detectors from different columns for each band

- LHP anomaly detected in late April 2018 causes the malfunction of the cooling system
 - Degraded data quality at all IR channels
- Great progress to optimize the ABI performance
 - Changes of the focal plane module (FPM) operation temperature
 - Visible and Near-Infrared (VNIR) FPM: floating
 - Infrared (IR) FPMs: controlled at an elevated temperature (~81K) + floating when not controlled

- Gain-set switch as needed

- Currently set the gain-set switch at fixed time for B08-B16 for the days when the max IR FPM temperature reaches the threshold
- Adjustments of operational procedures
 - Timeline adjustment
 - More frequency of blackbody calibration
- Yaw-flip semi-annually
- Algorithm changes
 - Predictive calibration algorithm (pCal) implementation to improve the cal. accuracy during the unstable FPM period
 - Update RadCal LUTs to reduce striping
 - FPM temperature adjusted solar calibration coefficients for the VNIR bands (ongoing effort)
 - New IR spectral response function (SRF) at 81K (ongoing effort)

•

Objectives

- To validate and monitor the GOES-16/17 ABI radiometric Calibration Accuracy since in-orbit
 - Absolute Calibration Accuracy
 - Relative Calibration Variation within Field of Regard (FOR)
 - Spatial uniformity within FOR
 - Response versus Scan-angle (RVS) for the two scan mirrors
 - Detector-to-detector variation for hundreds to thousands of detector per band

Methodology

- Absolute Calibration Accuracy
 - Global Space-based Inter-Calibration System (GSICS) as the primary tools
 - Reference instruments for VNIR bands: SNPP VIIRS and NOAA20 VIIRS
 - Reference instruments for IR bands: SNPP CrIS, NOAA20 CrIS, Metop-A/B/C IASternal
 - Reference instrument for GOES-17 IR diurnal variation: GOES-16 ABI
- Relative Calibration Variation with FOR
 - RVS for VNIR bands: lunar irradiance model
 - RVS for IR bands: Special space scans
 - Detector-to-detector variation: Lunar North-South Scans (NSS)

https://www.star.nesdis.noaa.gov/smcd/ GCC/index.php

Rad. Calibration Accuracy for VNIR Bands

- Ray-matching method shows that most of G16/G17 VNIR bands are generally within 5% difference to SNPP/VIIRS, except for B2 (0.64μm) at both G16/G17 satellites.
- The updated solar diffuser BRDF look-up table, which was derived based on the prelaunch measurements, was implemented for G16 on 04/23/2019 and G17 on 04/27/2019 to mitigate the large bias for these two bands.
 - The new Biases to VIIRS are greatly reduced

Time-series of ABI vs. VIIRS Calibration Difference

Monitoring for all the VNIR bands are available at:

https://www.star.nesdis.noaa.gov/GOESCal/G16 ABI VNIR InterCal static.php https://www.star.nesdis.noaa.gov/GOESCal/G17 ABI VNIR InterCal static.php

CISESS 2019, College Park, MD

G16/17 IR Calibration Accuracy

G17ABI (Gain Set=1)/G16ABI vs. CrIS/IASI, Night Time

Long-term Monitoring of G16 IR

More detailed daily and long-term monitoring available at: shttps://www.star.nesdistnoaa.gov/GOESCal/G16 ABI IR InterCal static.php

Long-term Monitoring of G17 IR Calibration Accuracy at Stable FPM Period

More detailed daily and long-term monitoring available at Phttps://www.starnesdis.noaa.gov/GOESCal/G17 ABI IR InterCal static.php

the pCal Performance Validation

Detector Response Uniformity - method

- 1. Identify the illuminated lunar edge for each detector
- 2. Vicinity space samples (x) used to compensate for the partial illuminated area, OOF/blooming, and detector noise effects
- 3. Summarize the radiance of the illuminated lunar surface samples and the vicinity space samples
- 4. Normalize the summarized radiance to the first column radiance value

G16 VNIR Detector Uniformity

Detector-to-detector response variation in general meet the requirement

G17 VNIR Detector Uniformity

RVS for the VNIR Bands

All the G16/G17 ABI VNIR bands meet the RVS requirements

CISESS 2019, College Park, MD

RVS for the IR Bands

- GOES-16 ABI IR Bands are well within the RVS requirements
 - GOES-17 ABI IR Bands also meet the waived RVS requirements for the data collected during the gain-set I period

CISESS 2019, College Park, MD

Summary

- The overall calibration accuracy for the VNIR bands is less than 5% for most VNIR bands except for G17 B05.
 - On April 27, 2019, the solar calibration look-up table was updated for G16/G17 B02, which greatly improves the cal. accuracy and makes the radiance comparable to the reference.
 - Uncertainty of G17 B05 is slightly larger than 5%
- GOES-16 ABI IR bands are well calibrated and stable
 - Bias to CrIS/IASI is less than 0.2K
- Despite the LHP anomaly, GOES-17 ABI is optimized to greatly improve its performance.
 - Joins GOES-16 to provide the visible and infrared imagery with high spatial, temporal and spectral, radiometric and geometric quality.
 - IR radiance is stable and well calibrated when the IR FPM temperature is stable
 - The predictive calibration algorithm greatly improve the radiometric calibration accuracy at the unstable FPM temperature period.
 - Efforts are still ongoing to further improve the G17 ABI radiance quality.
- Spatial Uniformity with ABI FOR also meet the requirements