

Modeling New York City impacts on Energy Demand and Downwind Weather During the July 2010 Heat Wave

L. E. Ortiz¹, W. Wu², J. Gonzalez¹, R. Bornstein³, M. Schoonen², and J. Tongue⁴

¹Mechanical Engineering Department, City College of New York ²Environmental & Climate Sciences Department, Brookhaven National Laboratory ³Department of Meteorology, San Jose State University ⁴NOAA/National Weather Service, Upton, NY

> **CoRP Symposium September 16, 2015**

Weather Fatalities

July 2010 Heatwave

- A heat-wave event affected the Northeast United States in July 4-8, 2010.
- Temperatures reached 39.4 °C, causing 2 casualties and increasing hospitalizations.
- Power outages reported in NYC and Philadelphia, with record peak demand.

Research Questions

- Can we use dynamical downscaling to simulate the 2010 heat wave event?
- What are the regional impacts of urbanization, for example, suburban/rural Long Island weather?
- What impacts do heat wave events have on the city's energy demand?

Simulation Setup

- WRE version 3.5.1
- Three domains (2 nests)
 - D01: Δx: 9 km (1071 x 1071 km)
 - D02: Δx: 3 km (360 x 360 km)
 - D03: Δx: 1 km (90 x 90 km)
- Model Physics Options
 - Kain-Fritsch Cumulus (off in D03)
 - WSM6 Microphysics
 - BouLac PBL
 - **RRTM Longwave**
 - Dudhia Shortwave

Simulation Cases

- **1.CONTROL: NOAH LSM**
- **2. FOREST:** Urban LC switched to forest
- 3. URBAN: BEP + BEM urban
- **4. LATENT:** BEP + BEM + Hydro

Urban

PLUTO – Land use urban parameters at the tax-lot level

Provided by New York City, it includes information such as building plan area fraction, building heights, and building use (residential/commercial). An urban classification has been created, which is assimilated into the model.

Urban Hydrology + Cooling Tower Param. (Case 4, LATENT)

- Takes into account the effects of water in urban surfaces
- Adds the latent heat from cooling towers into the WRF BEM parameterization
 - Repartitions the anthropogenic heat balance in cities
 - Ability to forecast building energy demand

Gutiérrez et. al., 2015

Daily Tmax

- The homogeneous treatment of the urban surface in CONTROL leads to an urban heat island (UHI) extending through the entire New York Metropolitan Area.
- The **FOREST** case leads to an almost disappearance, except west of the Hudson river.
- The URBAN and LATENT cases, due to the urban parameterization, change the UHI extent and magnitudes, with hot spots in Midtown Manhattan and the Bronx.

CONTROL

22 24 26 28 30 32 34 36

Daily Tmin

- Strong nighttime UHI
- In the **FOREST** case, UHI disappears completely.
- The URBAN, CONTROL, and CONTROL cases show an UHI magnitude of ~5 °C, 1 °C greater than avg. as reported by Gedzelman et. al., 2003.
- The extent of the UHI is again very sensitive to urban parameterization, with the LATENT simulation showing the smallest area.

- Timing of the heatwave event is captured, with several locations reaching 39°C
- Maximum differences between the cases are in nighttime minimum temperatures.
- Long Island (Suffolk County) temperatures show differences with the urbanized simulations of up to 1 °C at night.

- Vertical cross-section of nighttime minimum temperature throughout NYC and Long Island.
- Urban plume disappear in FOREST case.
- LATENT case has very warm core in NYC, warm air extends throughout the cross-section.
- URBAN and CONTROL show warm mass, with small hotspots in urbanized land cover visible near surface of URBAN.

Surface Fluxes

- Two locations: Midtown Manhattan (solid) and Upton, NY (dashed)
- URBAN case exhibits largest sensible heat (675 W/m²), with Upton and the FOREST case showing lower, similar peaks (375 W/m²).
- FOREST and all all Upton cases have the highest latent heat fluxes (250 W/m² peak)
- Due to lower Latent Heat and higher Sensible heat flux, URBAN case Bowen Ratio is extremely high, growing unbounded.

Energy Impacts

- The Building Energy Model (BEM) in WRF (used in URBAN and LATENT) cases, can produce energy demand from buildings (AC consumption).
- An equipment electric load model is added to the model based on the urban land cover classification and work-hour schedules.
- The model is able to capture the timing and some of the variability from the heat wave event.
- Lack of non-building related energy components (e.g., NY subway) may account for part of the error.

Conclusions

- The model was able to capture the timing and magnitude of the heatwave event, as well as the NY UHI.
- A daytime UHI with a magnitude of 4 °C and a nighttime UHI of 5 °C were observed.
- A difference in rural/suburban Suffolk County, LI between the FOREST and other cases of up to 1 °C was observed.
- Vertical minimum temperature profiles show an urban plume in the CONTROL, URBAN, and LATENT cases, with the latter two showing larger extents both along the cross-section and vertically.
- The timing of the energy demand profile for NY was captured, with a RMSE of 1315 MW and 1270 MW for the URBAN and LATENT cases, respectively.

Future Work

- Expand study to United States Northeast.
- Climatology study
 - Urbanized climate simulation in the present
- Move into the future
 - Impacts of urbanization in the Northeast region during heatwaves and storms under the climate change signal

Acknowledgements

This work was supported by the National Oceanic and Atmospheric Administration – Cooperative Remote Sensing Science and Technology Center (NOAA-CREST). NOAA CREST - Cooperative Agreement No: NA11SEC4810004