Physical and Biological Implications of Eddy Signatures in the Benguela and California Current Regions

Sheekela Baker-Yeboah^{1,2}, Deirdre A. Byrne², Eric Leuliette², and Paul DiGiacomo²

¹University of Maryland Earth System Science Interdisciplinary Center/CICS, ²NOAA/NESDIS/STAR/Satellite Oceanography and Climate Division

Overview

- I. Background
- II. Data Sets

III. Eddy related enhanced seaward upwelling and filaments IV. Summary

Lets think about the 'complexity of the biophysical interactions that drive plankton distributions'

- What scales do you think of?.
- Physicist Jose Luis Aragon et. al (2006) note the mathematical structure of natural turbulence in relation to van Gogh's works, e.g., like swirling skyline...
- Oceanographer/Mathematici an Barry B. Cael relates biophysial interactions to Pollock's small scales in Wild Beast.

https://www.us-ocb.org/new-satellites-paint-aportrait-of-plankton-spatial-variability/

• Wind driven upwelling

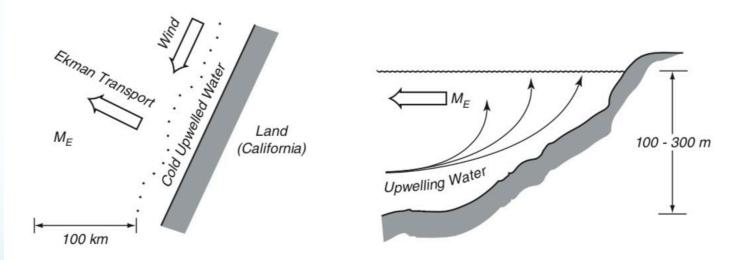
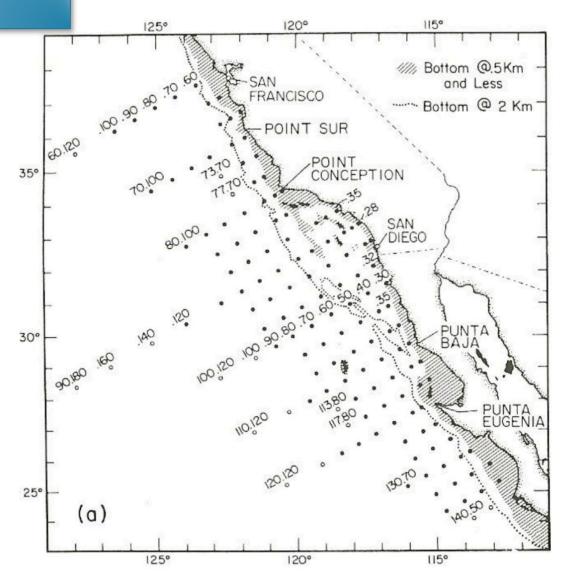
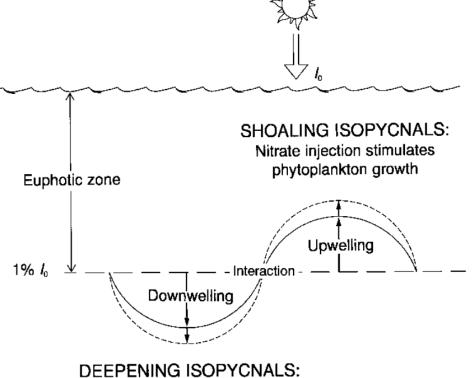



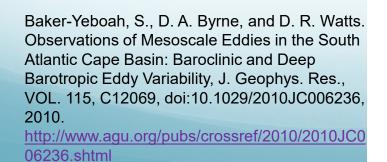
Figure 9.8 Sketch of Ekman transport along a coast leading to upwelling of cold water along the coast. Left: Plan view. North winds along a west coast in the northern hemisphere cause Ekman transports away from the shore. **Right:** Cross section. The water transported offshore must be replaced by water upwelling from below the mixed layer.

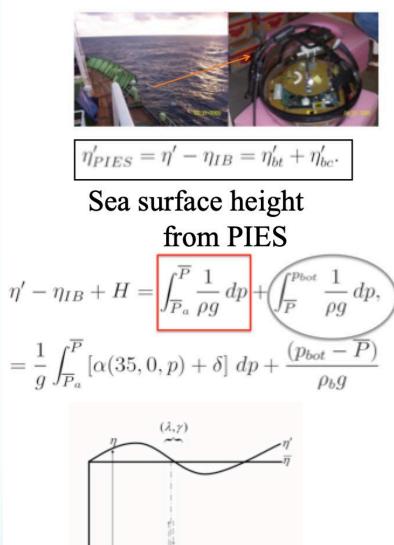

Steward (2009) Introduction to Physical Oceanography, p. 156.

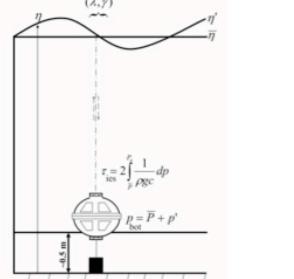
- Well known CalCalfi in situ data
- Feature-Oriented Regional Modeling System (FORMS)

Gangopadhyay, Avijit; Lermusiaux, Pierre F.J.; Rosenfeld, Leslie; Robinson, Allan R.; Calado, Leandro; Kim, Hyun Sook; Leslie, Wayne G. and Haley, Patrick J 2011: The California Current System: A Multiscale Overview and the Development of a FeatureOriented Regional Modeling System (FORMS)." Dynamics of Atmospheres and Oceans 52, no. 1–2: 131–169

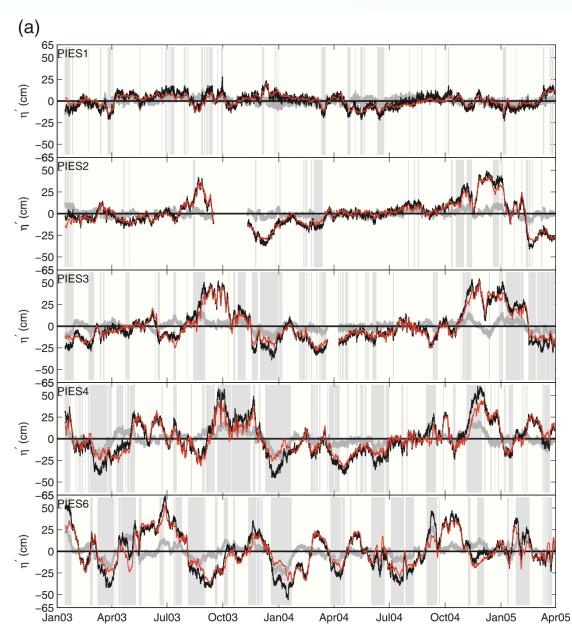
The eddy upwelling mechanism for adjacent eddies of opposite sign (McGillcuddy et. al, 1998)




No ecosystem response


Figure 1 A schematic representation of the eddy upwelling mechanism. The solid line depicts the vertical deflection of an individual isopycnal caused by the presence of two adjacent eddies of opposite sign. The dashed line indicates how the isopycnal might be subsequently perturbed by interaction of the two eddies. I_0 represents incident solar radiation, and $1\% I_0$ the base of the euphotic zone.

D. J. McGillicuddy Jr, A. R. Robinson, D. A. Siegel, H. W. Jannasch§, R. Johnsonk, T. D. Dickey, J. McNeil, A. F. Michaels, and A. H. Knapk, Influence of mesoscale eddies on new production in the Sargasso Sea, Nature, Vol 394, 1998.


 Eddy signatures from in situ data show both baroclinic (steric) and mass load height components (Baker-Yeboah et al 2010)

 Eddy signatures from in situ data show both baroclinic (steric) and mass load height components (Baker-Yeboah et al 2010)

Baker-Yeboah, S., D. A. Byrne, and D. F Observations of Mesoscale Eddies in th Atlantic Cape Basin: Baroclinic and Dee Barotropic Eddy Variability, J. Geophys. VOL. 115, C12069, doi:10.1029/2010JC 2010.

http://www.agu.org/pubs/crossref/2010/ 06236.shtml FIG. 3. (a) SSH variability from PIES sites: η'_{bt} (gray), η'_{bc} (red), and η'_{PIES} (black). The red curve is often close to the black curve. The shaded regions highlight times during which η'_{bt} can influence the total sea level variability, when ${}^{\dagger}R_{bt} \ge 0.25$ and $|\eta'_{PIES}| \ge 15$ cm. (b) As in (a), but for sites 7–12.

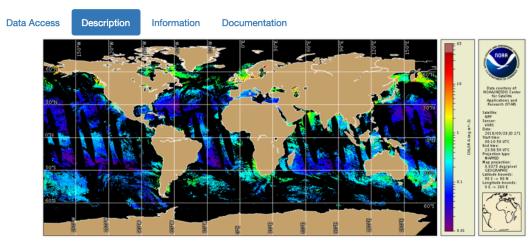
- Using the strong correlation between altimeter and in situ pressure sensor—equipped inverted echo sounder (PIES) data, an analysis is done using current altimeter data in conjunction with Visible Infrared Imaging Radiometer Suite (VIIRS; on board S-NPP and NOAA-20) Ocean Color and Sea Surface Temperature data to gain further insight into the physical and biological implications of mesoscale eddies associated with Agulhas rings off of South Africa.
- A comparison is done with the California Current system, another major upwelling regime in the World Ocean,
 - to assess the the relationship of slope eddies in upwelling regions to open ocean eddy signatures.

Overview

I. Background

II. Data Sets

III.Eddy related enhanced seaward upwelling and filaments IV.Summary


V. Further Applications

Data Sets Used

NOAA MSL12 Ocean Color - Science Quality - VIIRS SNPP

Satellite Data Products / Ocean Color (Chlorophyll, radiances, etc.) / Science quality / NOAA MSL12 Ocean Color - Science Quality - VIIRS SNPP

Updated: December 18, 2018

Daily

750 m resolution

Level 2 VIIRS Ocean Color produced by NOAA/STAR Ocean Color Team through NOAA Multi-Sensor Level 1 to Level 2 processing system (MSL12) using an improved calibration for the satellite data record (OC-SDR, which is Level 1b).

The current VIIRS science quality collection, released in CoastWatch as of 07 August 2017, is produced from MSL12 v1.2* using OC-SDR v04.

Ocean Color satellite sensors measure visible light at specific wavelengths which leaves the surface of the ocean and arrives at the top of the atmosphere where the sensor is located. nL_w , can be calculated. nL_w s are used to derive other ocean properties such as the concentration of chlorophyll-*a* (chlor-*a*, chlora, or sometimes chl , which is the green pigment responsible for photosynthesis and therefore and indicator of the amount of phytoplankton biomass in the ocean water) and the coefficients for attenuation of downwelling irradiance (K_d (PAR) and K_d (490) which are related to water clarity).

The ocean color datasets described here are from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor aboard the Suomi-NPP satellite (SNPP) which was launched in November 2011. The VIIRS SNPP ocean color science quality collection differ in several ways from the near real-time products (Table 1).

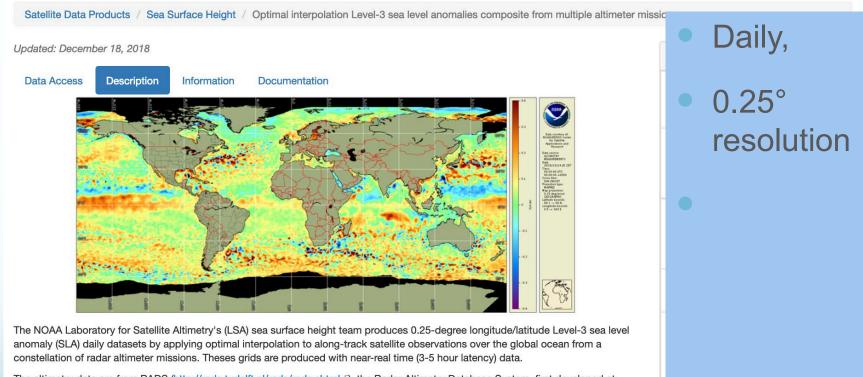
*Note that the metadata in the NetCDF files show v1.20 from the beginning of the collection (2 Jan. 2012) up through 24 April 2017 and v1.21 from 25 April 2017 forward. This version change did not affect retrieval values for the standard products served by CoastWatch.

Data Sets Used

OAA Submit the Help Desk:

Email (301) 683-3335

NOAA Geo-Polar Blended Global Level 4


Satellite Data Products / Sea Surface Temperature / NOAA Geo-Polar Blended Global Level 4 Daily Updated: December 18, 2018 Information **Data Access** Description Documentation The National Oceanic and Atmospheric Administration's (NOAA) office of National Environmental Satellite Data and Services (NESDIS)

0.05° (~5km) global resolution

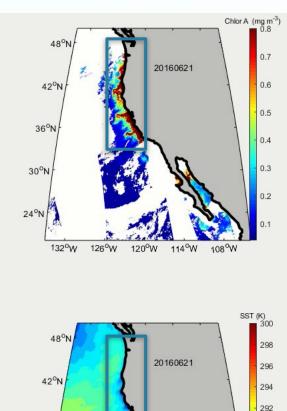
now generates a daily 0.05° (~5km) global high resolution satellite-based sea surface temperature (SST) analyses on an operational basis. The new analysis combines SST data from U.S. Japanese and European geostationary infrared imagers, and low-earth orbiting infrared (U.S. and European) SST data, into a single high-resolution 5-km product - this grid spacing was chosen to allow the resolution to approach the Nyquist sampling criterion for the mid-latitude Rossby radius (~20 km), in order to preserve mesoscale oceanographic features such as eddies and frontal meanders. The input SST data themselves are also processed in-house via the Geo-SST Bayesian and physical retrieval approach (GOES-E/W, Meteosat-10), and, for polar-orbiting and Himawari-8, the Advanced Clear Sky Processor for Oceans (ACSPO).

Data Sets Used

Optimal interpolation Level-3 sea level anomalies composite from multiple altimeter missions

The altimetry data are from RADS (http://rads.tudelft.nl/rads/rads.shtml), the Radar Altimetry Database System, first developed at Delft University of Technology, now also at the NOAA and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). The RADS data for each mission is updated with state of the art corrections for tides, atmospheric path delay, etc. Because they are all computed consistently between the various missions, this avoids the possibility of introducing biases and drifts because of the different implementation of the various corrections by different agencies. The goals of RADS are to provide a homogenous dataset of sea level anomalies, wave heights, and wind speeds, along with database selection and analysis tools.

1 3


Submit

Overview

- I. Background
- II. Data Sets

Eddy related enhanced seaward upwelling and filaments

290

288

286 284

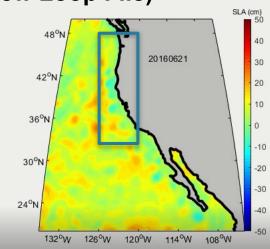
282

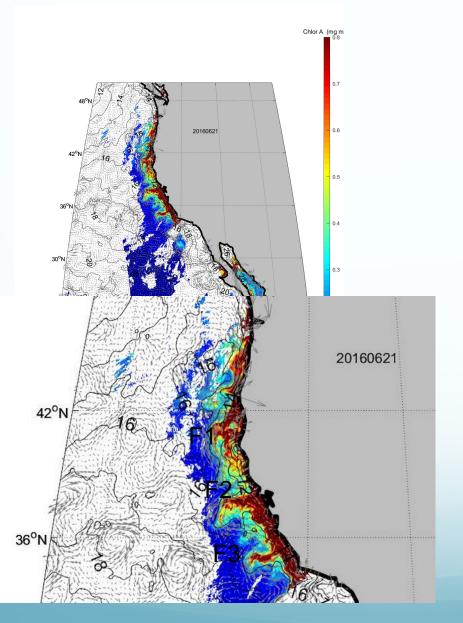
280

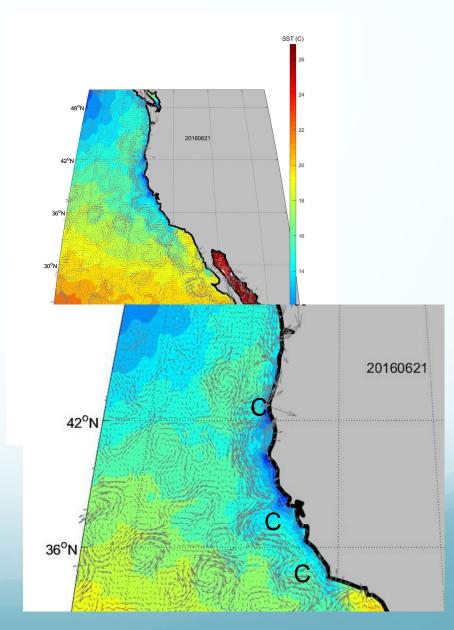
108°W

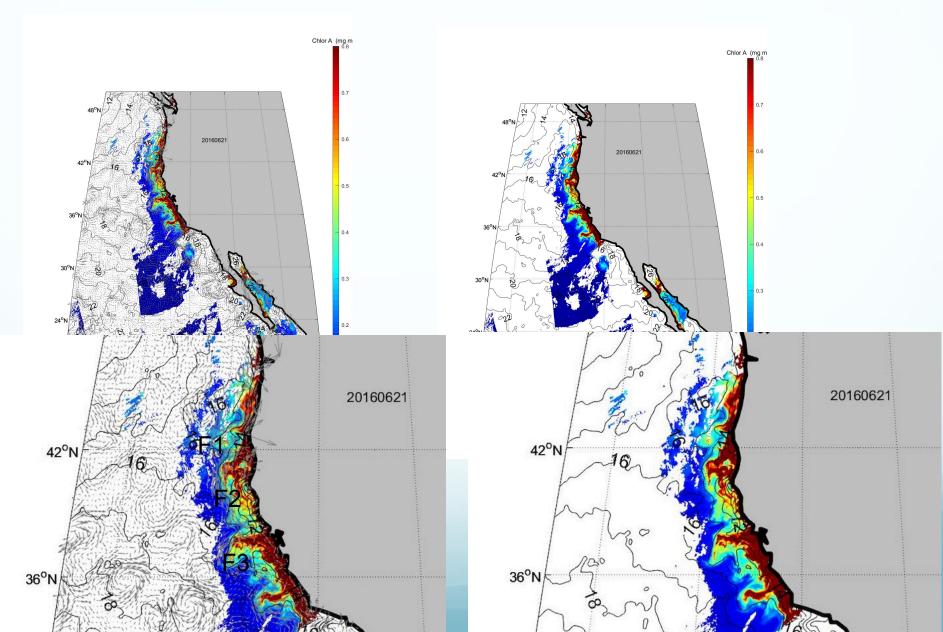
36°N

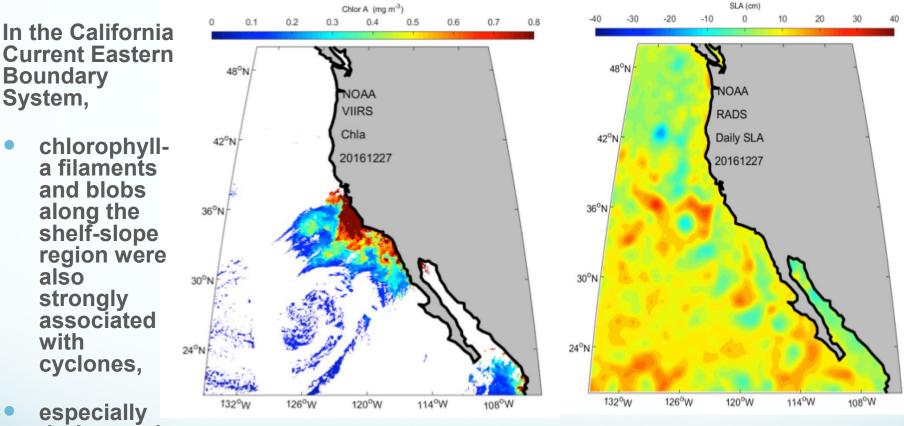
30°N

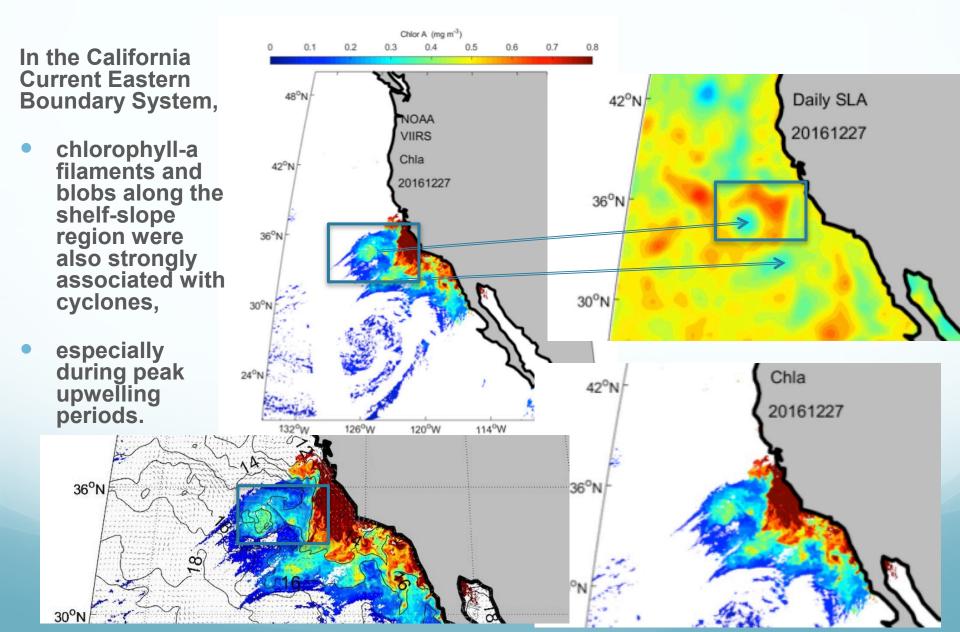

24°N

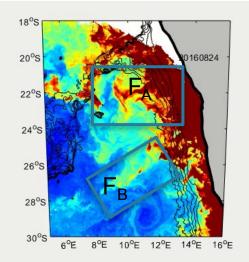

132°W


126°W

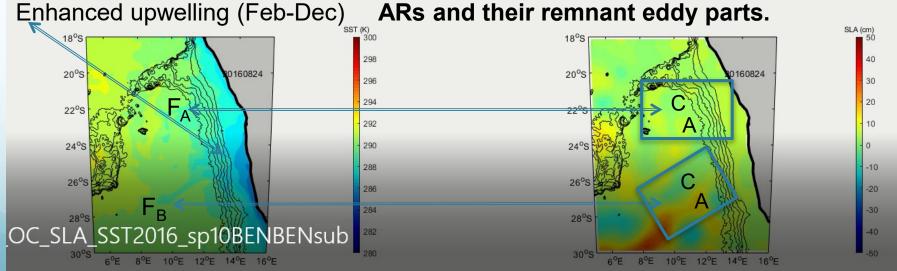

120°W 114°W

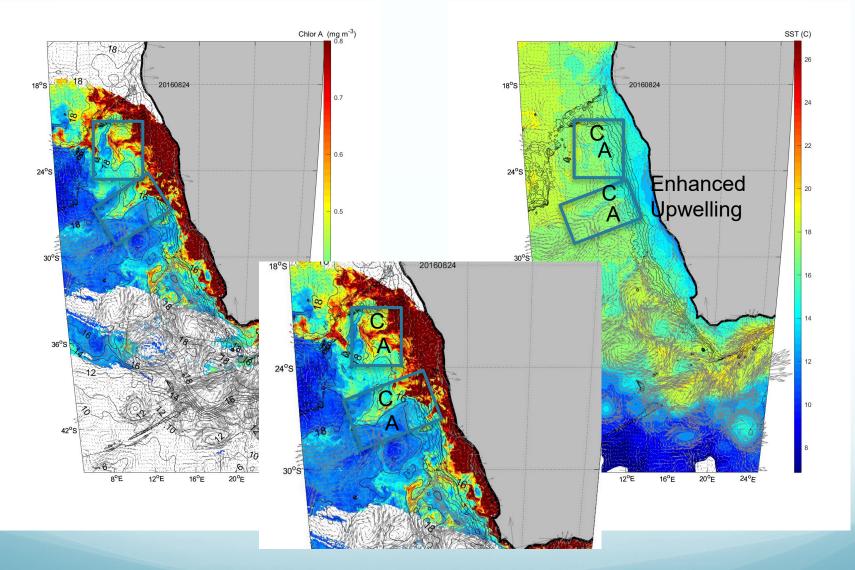

Chlorophyll-a filaments (upper left) and blobs along the shelf-slope region were also strongly associated with cyclones (lower right) and cold slope water filaments (lower left). (View Loop File)



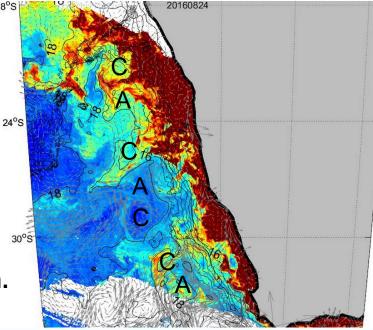


especially during peak upwelling periods.

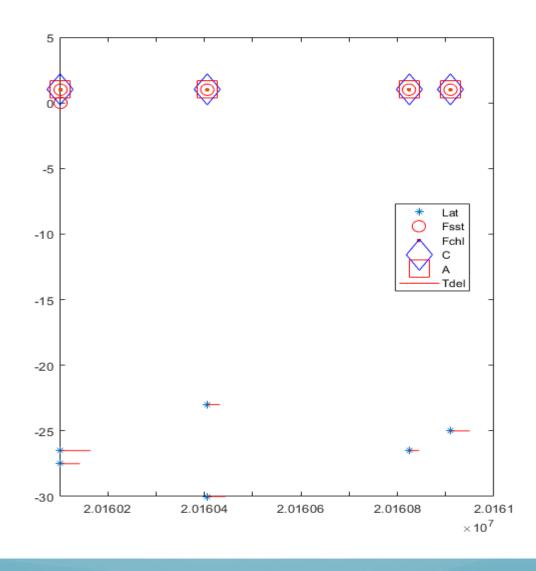

Chlor A (ma m³



Benguela Upwelling Region


Mesoscale and submesoscale processes strongly drive the development and propagation of the Chl-a blobs of water from the shelf-slope region.

The intensity and longevity of high Chl-a filaments associated with the Benguela upwelling system are strongly related to deep ARs and their remnant eddy parts.



*Overlay plots for SLA, SST, and OC *Maps of combined event results Mesoscale and submesoscale counter-paired advection as a mechanism for enhanced upwelling, species abundance and redistribution.

Combined Plot of OC, SST, SLA Events (Example 2016 BEN)

Fisheries Applications: Eddy Advection-and-Pumping Event Maps (Offshore/Coastal Transition Zone Events)

> *Overlay plots for SLA, SST, and OC *Maps of combined event results Mesoscale and submesoscale counter-paired advection as a mechanism for enhanced species abundance and redistribution?

Summary Points

- The ocean dynamic signal of cyclonic and anticyclonic eddies are equally important in both the California and Benguela Eastern Boundary Upwelling Systems at enhancing the seaward component of upwelling as observed over a 3-year period of 2014 to 2018.
- In the California Upwelling regions, large filament extended 200 km to 500 km from the deep slope (1000 m isobar) with variable width: broader near the shelf slope (80 to 160 km) and narrowing seaward (30 to 20 km), lasting on average up to 4 weeks in SST and OC, occurring off and on through out each year.
- Smaller filaments were just as ubiquitous but with scales near the shelf slope of 80 to 100 km and narrowing seaward to 30 to 20 km.
- Most filaments terminated in cyclonic curl based on OC data, showing strong cyclonic tendency or a T shape bridge indicating positive and negative vorticity.
- Cyclones were the primary carriers of the rich Chlorophyll-a signals.
- Cyclone-Anticyclone pairs (and pairing) are common and support cross slope filaments of rich Chla.

Summary Points

- Sea surface height variability in conjunction with ocean color imagery show ARs and their split eddy parts act as a driver of long cross-slope high Chl-a filament formations in the Benguela Upwelling System;
- Benguela High Chl-a filaments and Agulhas eddy slope events occur more often than previously thought given the rich eddy field of the region and the consistent observation in satellite altimeter data that some ring parts follow the deep 3000 meter isobath away from the main (west-northwest) pathway of the ring corridor.
- This shelf-slope branch of the ring corridor provides a connection between the biologically active upwelling region and the open ocean, as western boundary current eddies influence an eastern boundary upwelling regime at sub- and mesoscales.
- in both Benguela and California upwelling systems Cyclone-Anticyclone pairs (and pairing) are common and support cross slope filaments of rich Chla, playing a role in the bio-diversity and enhancing upwelling at both sub and meso-scales.

The study of biophysical interactions

- that influence plankton distribution and that of other species
- is multifaceted.

Jose

Luis Arago

Ba

മ

Ince

- (2006) 1889) **Organized eddy motions**
 - occur at variable scales and
 - the energy cascade can be from either sub- to meso-scale or meso- to submeso-scale.

Thank You