A Prototype Precipitation Retrieval Algorithm for ATMS

Yalei You, Nai-Yu Wang, Ralph Ferraro ESSIC/UMD

What we have done for SSMIS

- Collocate SSMIS and NMQ (originally did by Nai-Yu for GPROF)
- Create database for snow and rain, separately
- Stratify the single databases into more homogenous databases
- Linear Discriminant Analysis (LDA) for detection and Bayesian form retrieval

It is demonstrated:

• Using stratified databases, both the detection and retrieval performance are superior to that using the single database.

Singe Database

Stratified Databases

Scatter plots between observed and retrieved rainfall

Using Stratified database:

- Larger correlation
- Smaller RMSE
- Similar features for snowfall

Heidke skill score

• Larger HSS from stratified databases, indicates better performance.

- Apply this framework to ATMS (Bayesian algorithm, chosen by GPM)
- But how to handle the different viewing angles (i.e., Conical vs. Cross-track scanning schemes)

ATMS (cross-track)				SSMIS (conical)				
Ch	GHz	Pol (nadir)	FOV(km) (nadir)	Ch	GHz	Pol	FOV(km)	
1	23.8	V	76	1	19.35	V	73×47	
2	31.4	V	76	2	19.35	н	73×47	
3	50.3	н	32	3	22.235	V	73×47	
4	51.8	н	32	4	37.0	V	41×31	
5	52.8	н	32	5	37.0	н	41×31	
6	54.4	н	32	6	52.8	н	18×27	
7	88.2	V	16	7	54.4	н	18×27	
8	165.5	н	16	8	91.665	V	14×13	
9	183.31±1	н	16	9	91.665	н	14×13	
10	183.31±1.8	н	16	10	150	н	14×13	
11	183.31±3	н	16	11	183.31±1	н	14×13	
12	183.31±4.5	н	16	12	183.31±3	н	14×13	
13	183.31±7	н	16	13	183.31±7	н	14×13	

ATMS (cross-track)				SSMIS (conical)				
Ch	GHz	Pol (nadir)	FOV(km) (nadir)	Ch	GHz	Pol	FOV(km)	
1	23.8	V	76	1	19.35	V	73×47	
2	31.4	V	76	2	19.35	н	73×47	
3	50.3	н	32	3	22.235	V	73×47	
4	51.8	н	32	4	37.0	V	41×31	
5	52.8	н	32	5	37.0	н	41×31	
6	54.4	н	32	6	52.8	н	18×27	
7	88.2	V	16	7	54.4	н	18×27	
8	165.5	н	16	8	91.665	V	14×13	
9	183.31±1	н	16	9	91.665	н	14×13	
10	183.31±1.8	н	16	10	150	н	14×13	
11	183.31±3	н	16	11	183.31±1	н	14×13	
12	183.31±4.5	Н	16	12	183.31±3	Н	14×13	
13	183.31±7	Н	16	13	183.31±7	Н	14×13	

TB variation vs. Beam Position

Three regions (10 degree box) are chosen

- Amazon
- Sahara
- Southern Great Plain (SGP)

The objective:

- To study **how the TB varies** along with the different **beam positions**, under non-raining scene.
- Non-raining scene: (V190-V186)>10K
- Similar result is obtained by using CloudSat radar to do the screening for AMSU-B

TB variation vs. Beam Position

It is found:

- Larger TB variations over the edges (~5K)
- Smaller variations in the center (~2K)
- Asymmetric issue over the left and right edge
- Therefore, beam positions are grouped into:
 - 1-20 (edge)
 - 21-76 (center)
 - 77-96 (edge)

Stratified Databases

Case on 05/15/2014

- Detection method performs well
- Retrieved and observed rainrates agree very well

Retrieved vs. observed in 07/2014

- Retrieval results are very promising.
- One-standard deviation errorbar covers the precip. range.

Rainrate geo-spatial distribution in 07/2014

- Overall, the pattern similar. East-west contrast
- Over-estimation over Southeastern US

Rainrate geo-spatial distribution in 01/2014

- Similar pattern over the Eastern U.S.
- Large difference over the Rocky mountain areas.
- Poor radar data quality, especially in the winter season.

Radar Quality Index (RQI)

Radar data quality:

- Terrain blockage
- Freezing level height

The preliminary results showed:

- The algorithm performs reasonably well
- The error (variance) of the retrieved rainrate provides additional information

Next steps:

- Consider Radar Quality Index (NMQ data)
- Compare with MIRS ATMS results in the future
- Apply to snow retrieval
- Apply to the global-scale

Questions and Comments