

# Local atmosphere–ocean predictability: dynamical origins, lead times, and seasonality

**Eviatar Bach**, Safa Motesharrei, Eugenia Kalnay, Alfredo Ruiz-Barradas November 8, 2019

Department of Atmospheric and Oceanic Science, University of Maryland, College Park



1 NOVEMBER 2019

BACH ET AL.

7507

#### Local Atmosphere–Ocean Predictability: Dynamical Origins, Lead Times, and Seasonality<sup>®</sup>

#### EVIATAR BACH

Department of Atmospheric and Oceanic Science and Institute for Physical Science and Technology, University of Maryland, College Park, College Park, Maryland

#### SAFA MOTESHARREI

Department of Atmospheric and Oceanic Science, Institute for Physical Science and Technology, and Department of Physics, University of Maryland, College Park, College Park, Maryland

#### EUGENIA KALNAY

Department of Atmospheric and Oceanic Science and Institute for Physical Science and Technology, University of Maryland, College Park, College Park, Maryland

#### ALFREDO RUIZ-BARRADAS

Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

(Manuscript received 29 November 2018, in final form 25 June 2019)

# Paper link: ter.ps/lcn My email: ebach@umd.edu

• Ocean-atmosphere system is coupled, so that the atmosphere has the potential to provide predictability to the ocean and the ocean to the atmosphere.

- Ocean-atmosphere system is coupled, so that the atmosphere has the potential to provide predictability to the ocean and the ocean to the atmosphere.
- Want to determine where and for how long ocean improves prediction of the atmosphere, and vice-versa. First such global analysis.

- Ocean-atmosphere system is coupled, so that the atmosphere has the potential to provide predictability to the ocean and the ocean to the atmosphere.
- Want to determine where and for how long ocean improves prediction of the atmosphere, and vice-versa. First such global analysis.
- This can allow us to target regions where prediction could be improved.

- Ocean-atmosphere system is coupled, so that the atmosphere has the potential to provide predictability to the ocean and the ocean to the atmosphere.
- Want to determine where and for how long ocean improves prediction of the atmosphere, and vice-versa. First such global analysis.
- This can allow us to target regions where prediction could be improved.
- The predictability has physical origins, so it can help interpret physical interactions.

• In extratropics, atmosphere primarily drives SST anomalies, through heat fluxes from the large-scale circulation, Ekman transport, and Ekman pumping.

- In extratropics, atmosphere primarily drives SST anomalies, through heat fluxes from the large-scale circulation, Ekman transport, and Ekman pumping.
- In tropics, SST drives the atmosphere through convection..

- In extratropics, atmosphere primarily drives SST anomalies, through heat fluxes from the large-scale circulation, Ekman transport, and Ekman pumping.
- In tropics, SST drives the atmosphere through convection..
- SSTs an important source of climate predictability, especially in tropics due to lack of baroclinic instability.

- In extratropics, atmosphere primarily drives SST anomalies, through heat fluxes from the large-scale circulation, Ekman transport, and Ekman pumping.
- In tropics, SST drives the atmosphere through convection..
- SSTs an important source of climate predictability, especially in tropics due to lack of baroclinic instability.
- In extratropics, effect of SSTs is much harder to measure due to low signal-to-noise ratio. Usually studied with GCMs.

# Methods

• We use the following fields from ERA-Interim (1979–2017) at 80 km resolution:

- We use the following fields from ERA-Interim (1979–2017) at 80 km resolution:
  - Low-level atmosphere (Atmos): surface pressure and vorticity, divergence, air temperature, and specific humidity at 850 hPa

- We use the following fields from ERA-Interim (1979–2017) at 80 km resolution:
  - Low-level atmosphere (Atmos): surface pressure and vorticity, divergence, air temperature, and specific humidity at 850 hPa
  - Ocean: sea-surface temperature

- We use the following fields from ERA-Interim (1979–2017) at 80 km resolution:
  - Low-level atmosphere (Atmos): surface pressure and vorticity, divergence, air temperature, and specific humidity at 850 hPa
  - Ocean: sea-surface temperature
- In each grid cell, time-series modelled as autoregressive processes and predictability determined using a method called Granger causality.

- We use the following fields from ERA-Interim (1979–2017) at 80 km resolution:
  - Low-level atmosphere (Atmos): surface pressure and vorticity, divergence, air temperature, and specific humidity at 850 hPa
  - Ocean: sea-surface temperature
- In each grid cell, time-series modelled as autoregressive processes and predictability determined using a method called Granger causality.
- The method is local.

• Granger causality is based on the principle that "X causes Y" if X assists in predicting the future of Y beyond the degree to which Y already predicts its own future.

- Granger causality is based on the principle that "X causes Y" if X assists in predicting the future of Y beyond the degree to which Y already predicts its own future.
- In other words, is there a significant improvement in the prediction of the future of the ocean by observing the atmosphere (and vice-versa)?





• Atmosphere-to-ocean predictability is significant almost everywhere, strongest in midlatitudes.



- Atmosphere-to-ocean predictability is significant almost everywhere, strongest in midlatitudes.
- Large in regions of large climatological SST gradients, where temperature advection due to Ekman currents is strongest.



### Ocean-to-atmosphere predictability



# Ocean-to-atmosphere predictability



• Ocean-to-atmosphere predictability is significant almost everywhere, strongest in tropical Pacific.

## Ocean-to-atmosphere predictability



- Ocean-to-atmosphere predictability is significant almost everywhere, strongest in tropical Pacific.
- The significance of the effect in the extratropics is notable and difficult to obtain with GCM studies.

### Atmosphere-to-ocean lead times



### Atmosphere-to-ocean lead times



• The atmosphere-to-ocean predictability is short-lived in the extratropics, generally fewer than 10 days.

### Atmosphere-to-ocean lead times



- The atmosphere-to-ocean predictability is short-lived in the extratropics, generally fewer than 10 days.
- In the tropical Indian and Pacific Oceans there is longer predictability, several months.

### Ocean-to-atmosphere lead times

Maximum lead time (ocean to atmosphere)



### Ocean-to-atmosphere lead times

Maximum lead time (ocean to atmosphere) 91 121 151 181 211 241 271 301 331 361 Days

• The ocean-to-atmosphere predictability is long-lived in the tropics (over a year over much of the tropical Pacific), consistent with previous work showing that the tropical atmosphere is highly predictable from SST.

# Seasonality



• Atmosphere-to-ocean predictability stronger in the summer hemisphere.

# Seasonality



- Atmosphere-to-ocean predictability stronger in the summer hemisphere.
- Due to the higher persistence of SST in the winter (deeper mixed layer), there is more "room to improve" by including the atmosphere in the summer.

# Local driver



(a) Daily resolution



(b) Freq. lower than 1/month

• At daily resolution, the atmosphere is the local driver except for a narrow band of latitudes around the Equator.

# Local driver



(a) Daily resolution



(b) Freq. lower than 1/month

- At daily resolution, the atmosphere is the local driver except for a narrow band of latitudes around the Equator.
- At lower frequencies, ocean-driven regions expand.

• We provide the first global estimates of atmosphere-to-ocean and ocean-to-atmosphere predictability.

- We provide the first global estimates of atmosphere-to-ocean and ocean-to-atmosphere predictability.
- We demonstrate the ubiquitous influence of SST on the atmosphere in the extratropics.

- We provide the first global estimates of atmosphere-to-ocean and ocean-to-atmosphere predictability.
- We demonstrate the ubiquitous influence of SST on the atmosphere in the extratropics.
- We find a strong influence of the atmosphere on the ocean in the extratropics, especially in regions of large climatological SST gradients. Weaker but longer-lived in the tropics.

- We provide the first global estimates of atmosphere-to-ocean and ocean-to-atmosphere predictability.
- We demonstrate the ubiquitous influence of SST on the atmosphere in the extratropics.
- We find a strong influence of the atmosphere on the ocean in the extratropics, especially in regions of large climatological SST gradients. Weaker but longer-lived in the tropics.
- We find a strong and long-lived influence of the ocean on the atmosphere in the tropics, weaker and short-lived in the extratropics.

- We provide the first global estimates of atmosphere-to-ocean and ocean-to-atmosphere predictability.
- We demonstrate the ubiquitous influence of SST on the atmosphere in the extratropics.
- We find a strong influence of the atmosphere on the ocean in the extratropics, especially in regions of large climatological SST gradients. Weaker but longer-lived in the tropics.
- We find a strong and long-lived influence of the ocean on the atmosphere in the tropics, weaker and short-lived in the extratropics.
- Could have applications for subseasonal-to-seasonal predictability and coupled data assimilation.



1 NOVEMBER 2019

BACH ET AL.

7507

#### Local Atmosphere–Ocean Predictability: Dynamical Origins, Lead Times, and Seasonality<sup>®</sup>

#### EVIATAR BACH

Department of Atmospheric and Oceanic Science and Institute for Physical Science and Technology, University of Maryland, College Park, College Park, Maryland

#### SAFA MOTESHARREI

Department of Atmospheric and Oceanic Science, Institute for Physical Science and Technology, and Department of Physics, University of Maryland, College Park, College Park, Maryland

#### EUGENIA KALNAY

Department of Atmospheric and Oceanic Science and Institute for Physical Science and Technology, University of Maryland, College Park, College Park, Maryland

#### ALFREDO RUIZ-BARRADAS

Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

(Manuscript received 29 November 2018, in final form 25 June 2019)

# Paper link: ter.ps/lcn My email: ebach@umd.edu

Extra slides

 To test whether X (the "cause") improves prediction of Y (the "effect"), we first model the two time-series each as a p-order vector autoregressive (VAR) stochastic process:

$$\mathbf{U}_{t} = \begin{pmatrix} \mathbf{X}_{t} \\ \mathbf{Y}_{t} \end{pmatrix} = \sum_{i=1}^{p} \begin{pmatrix} A_{xx} & A_{xy} \\ A_{yx} & A_{yy} \end{pmatrix}_{i} \begin{pmatrix} \mathbf{X}_{t-i} \\ \mathbf{Y}_{t-i} \end{pmatrix} + \begin{pmatrix} \boldsymbol{\epsilon}_{x,t} \\ \boldsymbol{\epsilon}_{y,t} \end{pmatrix}.$$
(1)

 To test whether X (the "cause") improves prediction of Y (the "effect"), we first model the two time-series each as a p-order vector autoregressive (VAR) stochastic process:

$$\mathbf{U}_{t} = \begin{pmatrix} \mathbf{X}_{t} \\ \mathbf{Y}_{t} \end{pmatrix} = \sum_{i=1}^{p} \begin{pmatrix} A_{xx} & A_{xy} \\ A_{yx} & A_{yy} \end{pmatrix}_{i} \begin{pmatrix} \mathbf{X}_{t-i} \\ \mathbf{Y}_{t-i} \end{pmatrix} + \begin{pmatrix} \boldsymbol{\epsilon}_{x,t} \\ \boldsymbol{\epsilon}_{y,t} \end{pmatrix}.$$
(1)

• That is, we assume that the state of  $X_t$  and  $Y_t$  is a linear combination of the *p* previous values taken on by the processes, plus normally distributed noise  $\epsilon$ .

 To test whether X (the "cause") improves prediction of Y (the "effect"), we first model the two time-series each as a p-order vector autoregressive (VAR) stochastic process:

$$\mathbf{U}_{t} = \begin{pmatrix} \mathbf{X}_{t} \\ \mathbf{Y}_{t} \end{pmatrix} = \sum_{i=1}^{p} \begin{pmatrix} A_{xx} & A_{xy} \\ A_{yx} & A_{yy} \end{pmatrix}_{i} \begin{pmatrix} \mathbf{X}_{t-i} \\ \mathbf{Y}_{t-i} \end{pmatrix} + \begin{pmatrix} \boldsymbol{\epsilon}_{x,t} \\ \boldsymbol{\epsilon}_{y,t} \end{pmatrix}. \quad (1)$$

- That is, we assume that the state of  $X_t$  and  $Y_t$  is a linear combination of the *p* previous values taken on by the processes, plus normally distributed noise  $\epsilon$ .
- X can affect Y, and vice-versa.

 This is just linear regression, so we can fit the VAR model using the time-series data and obtain the coefficients A<sub>ij</sub>.
*ϵ* will then be the residuals in the fit.

- This is just linear regression, so we can fit the VAR model using the time-series data and obtain the coefficients A<sub>ij</sub>.
  *ϵ* will then be the residuals in the fit.
- Granger causality is based on the principle that "X causes Y" if X assists in predicting the future of Y beyond the degree to which Y already predicts its own future.

- This is just linear regression, so we can fit the VAR model using the time-series data and obtain the coefficients A<sub>ij</sub>.
  *ϵ* will then be the residuals in the fit.
- Granger causality is based on the principle that "X causes Y" if X assists in predicting the future of Y beyond the degree to which Y already predicts its own future.
- To test whether including X improves our ability to predict the future of Y, we perform a separate reduced regression on Y where X is excluded:

$$\mathbf{Y}_{t} = \sum_{i=1}^{p} A'_{yy,i} \mathbf{Y}_{t-i} + \boldsymbol{\epsilon}'_{y,t}.$$
 (2)

• How to choose *p* (how many time-steps to look in the past when fitting the model)?

- How to choose *p* (how many time-steps to look in the past when fitting the model)?
- Need to be careful not to under- nor overfit.

- How to choose *p* (how many time-steps to look in the past when fitting the model)?
- Need to be careful not to under- nor overfit.
- We use the Akaike information criterion (AIC):

$$AIC = 2k - 2\log\hat{L}$$
(3)

- How to choose *p* (how many time-steps to look in the past when fitting the model)?
- Need to be careful not to under- nor overfit.
- We use the Akaike information criterion (AIC):

$$AIC = 2k - 2\log\hat{L}$$
(3)

• A trade-off between goodness of fit (log-likelihood log  $\hat{L}$ ) and complexity of model (degrees of freedom k)





• The atmosphere-to-ocean predictability dominates in the extratropics, consistent with the classic view of atmospheric forcing inducing SST anomalies



- The atmosphere-to-ocean predictability dominates in the extratropics, consistent with the classic view of atmospheric forcing inducing SST anomalies
- The ocean-to-atmosphere predictability is stronger in the tropics, consistent with convection driving atmospheric flow in the tropics.



# Lead times



# Lead times



• The atmosphere-to-ocean predictability starts off larger, but quickly decays. Ocean-to-atmosphere predictability takes much longer to decay.

# Spectral decomposition



# Spectral decomposition



 Both the atmosphere-to-ocean and ocean-to-atmosphere predictability are strongest at low frequencies, but the ocean-to-atmosphere predictability much more so. • Could help identify regions to target to improve subseasonal-to-seasonal prediction.

- Could help identify regions to target to improve subseasonal-to-seasonal prediction.
- Variable localization is the problem of determining when to "strongly couple" variables in coupled atmosphere–ocean DA. In some cases, this may degrade the analysis due to spurious correlations.

- Could help identify regions to target to improve subseasonal-to-seasonal prediction.
- Variable localization is the problem of determining when to "strongly couple" variables in coupled atmosphere–ocean DA. In some cases, this may degrade the analysis due to spurious correlations.
- The background error correlation (Yoshida and Kalnay 2018) has been used as a way to determine whether to strongly couple. The Granger causality could be tested as an alternate method.