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Introduction

• Ocean–atmosphere system is coupled, so that the
atmosphere has the potential to provide predictability to
the ocean and the ocean to the atmosphere.

• Want to determine where and for how long ocean
improves prediction of the atmosphere, and vice-versa.
First such global analysis.

• This can allow us to target regions where prediction could
be improved.

• The predictability has physical origins, so it can help
interpret physical interactions.
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Introduction

• In extratropics, atmosphere primarily drives SST
anomalies, through heat fluxes from the large-scale
circulation, Ekman transport, and Ekman pumping.

• In tropics, SST drives the atmosphere through convection..
• SSTs an important source of climate predictability,
especially in tropics due to lack of baroclinic instability.

• In extratropics, effect of SSTs is much harder to measure
due to low signal-to-noise ratio. Usually studied with
GCMs.

3 / 14



Introduction

• In extratropics, atmosphere primarily drives SST
anomalies, through heat fluxes from the large-scale
circulation, Ekman transport, and Ekman pumping.

• In tropics, SST drives the atmosphere through convection..

• SSTs an important source of climate predictability,
especially in tropics due to lack of baroclinic instability.

• In extratropics, effect of SSTs is much harder to measure
due to low signal-to-noise ratio. Usually studied with
GCMs.

3 / 14



Introduction

• In extratropics, atmosphere primarily drives SST
anomalies, through heat fluxes from the large-scale
circulation, Ekman transport, and Ekman pumping.

• In tropics, SST drives the atmosphere through convection..
• SSTs an important source of climate predictability,
especially in tropics due to lack of baroclinic instability.

• In extratropics, effect of SSTs is much harder to measure
due to low signal-to-noise ratio. Usually studied with
GCMs.

3 / 14



Introduction

• In extratropics, atmosphere primarily drives SST
anomalies, through heat fluxes from the large-scale
circulation, Ekman transport, and Ekman pumping.

• In tropics, SST drives the atmosphere through convection..
• SSTs an important source of climate predictability,
especially in tropics due to lack of baroclinic instability.

• In extratropics, effect of SSTs is much harder to measure
due to low signal-to-noise ratio. Usually studied with
GCMs.

3 / 14



Methods



Predictability analysis

• We use the following fields from ERA-Interim (1979–2017)
at 80 km resolution:

• Low-level atmosphere (Atmos): surface pressure and
vorticity, divergence, air temperature, and specific humidity
at 850 hPa

• Ocean: sea-surface temperature

• In each grid cell, time-series modelled as autoregressive
processes and predictability determined using a method
called Granger causality.

• The method is local.
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Granger causality

• Granger causality is based on the principle that “X causes
Y” if X assists in predicting the future of Y beyond the
degree to which Y already predicts its own future.

• In other words, is there a significant improvement in the
prediction of the future of the ocean by observing the
atmosphere (and vice-versa)?
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Results



Atmosphere-to-ocean predictability

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Atmosphere-to-ocean predictability ( Atmos SST)

• Atmosphere-to-ocean predictability is significant almost
everywhere, strongest in midlatitudes.

• Large in regions of large climatological SST gradients,
where temperature advection due to Ekman currents is
strongest.
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Atmosphere-to-ocean predictability

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Atmosphere-to-ocean predictability ( Atmos SST)

Magnitude of gradient of climatological SST (| T|)

0.000 0.009 0.018 0.027 0.036 0.045 0.054
K/km
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Ocean-to-atmosphere predictability

0.000 0.004 0.008 0.012 0.016 0.020 0.024
Ocean-to-atmosphere predictability ( SST Atmos)

• Ocean-to-atmosphere predictability is significant almost
everywhere, strongest in tropical Pacific.

• The significance of the effect in the extratropics is notable
and difficult to obtain with GCM studies.
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Atmosphere-to-ocean lead times

Maximum lead time (atmosphere to ocean)

1 31 61 91 121 151 181 211 241 271 301 331 361
Days

• The atmosphere-to-ocean predictability is short-lived in
the extratropics, generally fewer than 10 days.

• In the tropical Indian and Pacific Oceans there is longer
predictability, several months.
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Ocean-to-atmosphere lead times

Maximum lead time (ocean to atmosphere)

1 31 61 91 121 151 181 211 241 271 301 331 361
Days

• The ocean-to-atmosphere predictability is long-lived in
the tropics (over a year over much of the tropical Pacific),
consistent with previous work showing that the tropical
atmosphere is highly predictable from SST.
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Seasonality

JJA DJF

0.00 0.02 0.04 0.06 0.08 0.10
Atmosphere-to-ocean predictability ( Atmos SST)

• Atmosphere-to-ocean predictability stronger in the
summer hemisphere.

• Due to the higher persistence of SST in the winter (deeper
mixed layer), there is more “room to improve” by including
the atmosphere in the summer.
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Local driver

4.5 3.0 1.5 0.0 1.5 3.0 4.5
log( Atmos SST / SST Atmos)

(a) Daily resolution

4.5 3.0 1.5 0.0 1.5 3.0 4.5
log( Atmos SST(0, 1/month) / SST Atmos(0, 1/month))

(b) Freq. lower than 1/month

• At daily resolution, the atmosphere is the local driver
except for a narrow band of latitudes around the Equator.

• At lower frequencies, ocean-driven regions expand.
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Conclusions

• We provide the first global estimates of
atmosphere-to-ocean and ocean-to-atmosphere
predictability.

• We demonstrate the ubiquitous influence of SST on the
atmosphere in the extratropics.

• We find a strong influence of the atmosphere on the
ocean in the extratropics, especially in regions of large
climatological SST gradients. Weaker but longer-lived in
the tropics.

• We find a strong and long-lived influence of the ocean on
the atmosphere in the tropics, weaker and short-lived in
the extratropics.

• Could have applications for subseasonal-to-seasonal
predictability and coupled data assimilation.
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Granger causality

• To test whether X (the “cause”) improves prediction of Y
(the “effect”), we first model the two time-series each as a
p-order vector autoregressive (VAR) stochastic process:

Ut =

(
Xt
Yt

)
=

p∑
i=1

(
Axx Axy
Ayx Ayy

)
i

(
Xt−i
Yt−i

)
+

(
ϵϵϵx,t
ϵϵϵy,t

)
. (1)

• That is, we assume that the state of Xt and Yt is a linear
combination of the p previous values taken on by the
processes, plus normally distributed noise ϵϵϵ.

• X can affect Y, and vice-versa.
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Granger causality

• This is just linear regression, so we can fit the VAR model
using the time-series data and obtain the coefficients Aij.
ϵϵϵ will then be the residuals in the fit.

• Granger causality is based on the principle that “X causes
Y” if X assists in predicting the future of Y beyond the
degree to which Y already predicts its own future.

• To test whether including X improves our ability to predict
the future of Y, we perform a separate reduced regression
on Y where X is excluded:

Yt =
p∑
i=1

A′yy,iYt−i + ϵϵϵ′y,t. (2)
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Choice of p

• How to choose p (how many time-steps to look in the past
when fitting the model)?

• Need to be careful not to under- nor overfit.
• We use the Akaike information criterion (AIC):

AIC = 2k− 2 log L̂ (3)

• A trade-off between goodness of fit (log-likelihood log L̂)
and complexity of model (degrees of freedom k)
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Results
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• The atmosphere-to-ocean predictability dominates in the
extratropics, consistent with the classic view of
atmospheric forcing inducing SST anomalies

• The ocean-to-atmosphere predictability is stronger in the
tropics, consistent with convection driving atmospheric
flow in the tropics.
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Seasonality

JJA DJF

0.000 0.008 0.016 0.024 0.032 0.040
Ocean-to-atmosphere predictability ( SST Atmos)



Lead times
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• The atmosphere-to-ocean predictability starts off larger,
but quickly decays. Ocean-to-atmosphere predictability
takes much longer to decay.
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Spectral decomposition
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• Both the atmosphere-to-ocean and ocean-to-atmosphere
predictability are strongest at low frequencies, but the
ocean-to-atmosphere predictability much more so.
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Applications

• Could help identify regions to target to improve
subseasonal-to-seasonal prediction.

• Variable localization is the problem of determining when
to “strongly couple” variables in coupled
atmosphere–ocean DA. In some cases, this may degrade
the analysis due to spurious correlations.

• The background error correlation (Yoshida and Kalnay
2018) has been used as a way to determine whether to
strongly couple. The Granger causality could be tested as
an alternate method.
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