Ensemble Forecast of PM_{2.5} During The 2018 Camp Fire Event Using The HYSPLIT Model

Yunyao Li (UMD ESSIC), Daniel Tong (UMD AOSC/GMU/NOAA), Fantine Ngan (NOAA), Mark Cohen (NOAA) Shobha Kondragunta (NOAA), Xiaoyang Zhang (SDSU), Charles Ichuko (Howard), Edwards Hyer (NRL), Ralph Khan (NASA)

BACKGROUND

- Biomass burning releases a large amount of aerosols and trace gases into the atmosphere, often leading to severe air quality and health problems.
- However, the aerosols from biomass burning emissions are poorly predicted by global and regional models.
 - Great uncertainty in injection height, meteorological field, emission rate, emission source, transport model, etc.
 - Large gradient of the pollution concentration between affected and unaffected region
- Ensemble forecast is considered to be a good approach in reducing forecast uncertainty.
- Camp Fire: Nov 8-25 in North California
- In this study, we focus on PM_{2.5}

11/13/2019

(Source: NOAA AerosolWatch)

ENSEMBLE SETUP I

- We use different plume rise schemes, meteorology inputs, PBL options, vertical motion options, and emission data seta to create the ensemble.
 - Plume rise scheme:
 - I. Default: Briggs (1969) with updates by SP Arya (1999)

$$FB = 8.8 \times 10^{-6} \times HEAT$$

$$H_p = \begin{cases} 1.3FB \ U^{-1} \ x^{*-2} \end{pmatrix} \quad neutral, unstable \\ 2.6(FB \ U^{-1} \ s^{-1})^{\frac{1}{3}} \quad stable, U > 0.5 \ m \ s^{-1} \\ 5.3FB^{\frac{1}{4}} \ s^{-\frac{3}{8}} \quad stable, U \le 0.5 \ m \ s^{-1} \end{cases}$$

FB: Buoyancy Flux U: wind speed x^{*}: friction velocity s: static stability

2. Newly added to HYSPLIT: Sofiev (2012)

$$H_{p} = \alpha H_{PBL} + \beta \left(\frac{FRP}{P_{f0}}\right)^{\gamma} \exp\left(-\frac{\delta N_{FT}^{2}}{N_{0}^{2}}\right)$$

 $\alpha, \beta, \gamma, \delta$: parameters
 H_{PBL} : PBL Height
FRP: Fire Radiative Power
 N_{0} : reference RP (Pf0=10 W)
 N_{FT} : Brunt–Vaisala frequency at Free Troposphere;
 N_{0} : reference N

Step 1: using parameter set 1 (α=0.15; β=102; γ=0.49; δ=0) to calculate a temporary injection height (H_t).
 Step 2: If H_t < PBL_h then use parameter set 2 (α=0.24; β=170; γ=0.35; δ=0.6) to calculate H_p; if H_t > PBL_h, then use parameter set 3 (α=0.93; β=298; γ=0.13; δ=0.7) to calculate H_p.
 GFAS injection height

ENSEMBLE SETUP II

- We use different plume rise schemes, meteorology inputs, PBL options, vertical motion options, and emission data sets to create the ensemble.
 - Plume rise schemes: Briggs 1969, Sofiev 2012, and using GFAS injection height
 - Meteorology inputs: GDAS, NAM12, NARR, WRF
 - PBL Options:
 - CONTROL: using PBL height from input data;
 - KMIXD: PBL height derived from temperature profile;
 - Emission data: GFAS, FEER, GBBEPx, FLAMBE
 - Vertical motion options:
 - Option 0: using the meteorological model's vertical velocity fields
 - Option 5: compute vertical motion from the velocity divergence (for GDAS)
 - Option 6: adjusting the vertical velocity according to the slope of the terrain (for complex terrain)
- Totally more than 200 experiments

-122

-12

THE IMPACTS OF DIFFERENT PLUME RISE SCHEMES

- Usually, a higher injection height will reduce the concentration of the ground pollution.
- The daily GFAS injection height data fails to show the diurnal change of the PBL height.

-122

 -12°

THE IMPACTS OF DIFFERENT PBL OPTIONS

If the injection height is higher than the PBL height, the pollution would be injected to the free troposphere where horizontal wind speed is much higher, which will increase the impacted area.

THE IMPACTS OF DIFFERENT METEOROLOGY INPUTS

2018110901

Run #	Plume rise	Met data	Vertical motion	PBL option	Emission data		
01		GDAS	5 (div)	Canturali			
02		NARR		PBL from	CEAS		
03	Briggs	NAMI2	0 (input)	Input	GFAS		
04		WRF					

- Different meteorology inputs have different:
 - Horizontal wind speed field: controls the horizontal transport of the pollution and the impacted region
 - Vertical wind speed field: controls the vertical transport pattern
- PBL height: controls the injection height and the vertical transport pattern
 - Humidity & precipitation: affects the wet deposition

8

THE IMPACTS OF DIFFERENT VERTICAL MOTION OPTIONS

THE IMPACTS OF DIFFERENT EMISSION DATA

9

ENSEMBLE REDUCTION

- We use different plume rise schemes, meteorology inputs, PBL options, vertical motion options, and emission data sets to create the ensemble.
 - Plume rise schemes: Briggs 1969, Sofiev 2012, and using GFAS injection height
 - Meteorology inputs: GDAS, NAM12, NARR, WRF
 - PBL Options:
 - CONTROL: using PBL height from input data;
 - KMIXD: PBL height derived from temperature profile;
 - Emission data: GFAS, FEER, GBBEPx, FLAMBE
 - Vertical motion options:
 - Option 0: using the meteorological model's vertical velocity fields
 - Option 5: compute vertical motion from the velocity divergence (for GDAS)
 - Option 6: adjusting the vertical velocity according to the slope of the terrain (for complex terrain)
- Totally 80 experiments

YUNYAO LI

	_
	_
	_
	_

EVD #	Plume	Met	Vertical	PBL	Emission	EV.D. #	Plume	Met	Vertical	PBL	Emission	EVD #	Plume	Met	Vertical	PBL	Emission
EXP #	Rise	Input	Motion	Option	Data	EXP #	Rise	Input	Motion	Option	Data	EXP #	Rise	Input	Motion	Option	Data
1		GDAS	r	Control		28		NARR		C ()	FEER	55		CDAC	5	KMIXD	FEER
2			5	KMIXD		29				Control	GBBEPx	56		GDAS			GBBEPx
3			0	Control		30			0		GFAS	57			0 -	Control	GFAS
4		NADD	U U	KMIXD		31				KMIXD	FEER	58					FEER
5	Briggs	NAKK	6	Control		32					GBBEPx	59					GBBEPx
6	Driggs		0	KMIXD		33				Control	GFAS	60					GFAS
7			0	Control		34	1				FEER	61		NARR		KMIXD	FEER
8		NAM12	•	KMIXD		35			6		GBBEPx	62					GBBEPx
9		NAMIZ	6	Control		36	Briggs		0		GFAS	63			6	Control KMIXD Control	GFAS
10			Ŭ	KMIXD	FLAMBE	37			0	KMIXD	FEER	64					FEER
11		CDAS	5	Control		38					GBBEPx	65					GBBEPx
12		GDAS		KMIXD		39					GFAS	66	Sofiev				GFAS
13			0	Control		40				Control	FEER	67					FEER
14		NADD	v	KMIXD		41					GBBEPx	68					GBBEPx
15	Sofiew	NAKK	6	Control		42				KMIXD	GFAS	69					GFAS
16	Sollev			KMIXD		43					FEER	70					FEER
17			0	Control		44		NAM12			GBBEPx	71					GBBEPx
18		NAM12	U U	KMIXD		45		NAM12			GFAS	72					GFAS
19		IN/AMITZ	6	Control		46				Control	FEER	73				KMIXD	FEER
20			0	KMIXD		47			6		GBBEPx	74					GBBEPx
21					GFAS	48			0		GFAS	75		NAMIZ			GFAS
22				Control	FEER	49				KMIXD	FEER	76				Control	FEER
23		CDAS			GBBEPx	50					GBBEPx	77			c		GBBEPx
24	Briggs	GDAS	5		GFAS	51					GFAS	78			0		GFAS
25				KMIXD	FEER	52	Sofiev	CDAG		Control	FEER	79				KMIXD	FEER
26					GBBEPx	53		GDAS	э		GBBEPx	80					GBBEPx
27		NARR	0	Control	GFAS	54				KMIXD	GFAS						

STATISTICAL ANALYSIS OF EACH EXPERIMENTS

• We calculated the following 6 statistical variables to evaluate the simulation results of the 80 members:

EXP #	Corr	NMSE	FB	FMS	KSP	RMSE	Rank	EXP #	Corr	NMSE	FB	FMS	KSP	RMSE	Rank	Plume Rise	Met Input	Vertical Motion	PBL Option	Emission Data	Rank
1	0.38	4.05	0.36	79.7	21	72.93	2.55	42	0.58	2.35	0.61	77.13	38	33.09	2.42	mean					2.85
2	0.42	3.12	0.33	80.69	21	62.83	2.61	43	0.58	3.93	0.29	77.13	33	67.96	2.63	Sofiev	NAM12	0	Control	GBBEPx	2.85
3	0.22	13.1	0.51	81.75	17	139.07	2.44	44	0.53	9.62	0.85	75.31	26	146.69	2.35	Sofiev	NAM12	0	KMIXD	FEER	2.8
4	0.23	15.83	0.68	81.62	19	169.29	2.34	45	0.42	12.13	1.49	78.61	53	40.41	1.69	Briggs	NAM12	0	Control	FEER	2.66
5	0.28	19.49	0.73	82.02	19	194.05	2.34	46	0.42	4.21	0.91	78.61	44	38.16	2.07	Sofiev	NARR	0	Control	FLAMBE	2.65
6	0.2	46.21	1.04	81.09	24	366.07	2.09	47	0.33	5.75	0.16	75.12	39	67.26	2.4	Sofiev	NARR	0	KMIXD	FEER	2.65
7	0.53	15.53	1.06	77.22	23	208.06	2.29	48	0.38	10.61	1.43	77.67	52	40.21	1.69	Briggs	NAM12	0	KMIXD	FEER	2.63
8	0.56	14.71	1.13	77.86	23	215.35	2.3	49	0.38	4.27	0.8	77.67	46	40.93	2.06	Sofiev	NARR	0	Control	GBBEPx	2.62
9	0.43	3.98	0.79	79.01	35	39.44	2.23	50	0.31	7.28	0.06	75.75	43	79.62	2.39	Sofiev	NAM12	0	KMIXD	GBBEPx	2.62
10	0.45	3.41	0.5	78.27	34	43.04	2.39	51	0.28	13.43	1.5	79.46	47	41.36	1.66	Briggs	GDAS	5	KMIXD	FLAMBE	2.61
11	0.25	3.17	0.14	80.2	24	49.54	2.56	52	0.29	4.48	0.92	79.46	32	38.42	2.1	Sofiev	NAM12	0	Control	FLAMBE	2.61
12	0.25	3.13	0.23	81.28	24	47.38	2.52	53	0.31	2.77	0.26	78.52	28	43.92	2.47	Briggs	NARR	0	Control	FEER	2.61
13	0.18	8.98	0.04	81.68	18	92.31	2.65	54	0.29	13.28	1.49	80.2	46	41.28	1.68						
14	0.25	10.5	0.49	82.8	18	124.56	2.47	55	0.3	4.43	0.91	80.2	32	38.33	2.12	1					
15	0.18	9.46	0.15	79.85	29	85.26	2.46	56	0.3	2.86	0.23	78.57	25	45.17	2.51	1					
16	0.25	17.83	0.62	81.39	24	176.39	2.33	57	0.27	7.11	1.14	81.16	41	40.97	1.91	1					
17	0.4	3.48	0.23	77.78	21	61.55	2.61	58	0.28	5.53	0.36	81.16	26	57.73	2.45	Tor	1				
18	0.47	3.98	0.39	77.54	22	71.74	2.58	59	0.37	5.67	0.28	80.79	19	82.14	2.62		-				
19	0.37	14.19	1.54	77.45	54	40.8	1.61	60	0.22	5.2	0.83	82.2	31	43.63	2.15	Тор	5				
20	0.43	9.99	1.42	78.61	51	39.63	1.75	61	0.22	6.31	0.06	82.2	19	76.83	2.65	Тор	10				
21	0.47	6.27	1.19	78.74	37	37.28	2.04	62	0.19	10.81	0.69	81.37	18	140.94	2.32	1,					
22	0.47	2.16	0.42	78.74	31	34.95	2.48	63	0.17	12.83	1.44	80.29	50	42.53	1.62	Bott	tom 1				
23	0.45	2.86	0.22	77.83	28	56.71	2.59	64	0.18	7.27	0.82	80.29	39	51.15	2.03						
24	0.41	3.71	0.29	75.93	27	67.51	2.51	65	0.23	5.48	0.18	80.39	25	64.02	2.52	Bot	tom 5				
25	0.45	6.43	1.2	78.4	37	37.57	2.02	66	0.3	4.66	0.58	79.71	38	47.77	2.22	Bott	om 10				
26	0.45	2.24	0.44	78.4	31	35.47	2.46	67	0.3	8.9	0.35	79.71	28	106.02	2.43						
27	0.16	5.77	0.81	82.4	34	46.64	2.11	68	0.33	18.63	1.04	79.76	24	228.53	2.15						
28	0.16	7.74	0.08	82.4	20	86.31	2.61	69	0.56	6.74	1.25	77.54	40	36.71	2.06]					
29	0.14	13.9	0.7	80.84	19	161.1	2.29	70	0.56	2.16	0.54	77.54	29	32.69	2.53						
30	0.18	5.66	0.75	81.71	33	47.71	2.14	71	0.58	1.93	0	76.85	25	41.77	2.85						
31	0.18	8.38	0.15	81.71	22	92.74	2.55	72	0.62	3.57	0.98	77.45	36	33.11	2.31						
32	0.14	14.63	0.76	80.34	20	170.53	2.25	73	0.62	1.8	0.15	77.45	28	37.2	2.8						
33	0.29	4.94	0.4	80.1	38	52.91	2.31	74	0.56	4.36	0.46	77.42	24	79.79	2.62						
34	0.29	10.98	0.52	80.1	27	126.3	2.36	75	0.47	113.2	1.93	78.25	72	44.76	1.32						
35	0.28	26.27	1.13	80.53	21	285.53	2.11	76	0.47	42.14	1.82	78.25	64	43.51	1.46						
36	0.27	6.43	0.21	78.18	35	66.64	2.4	77	0.48	28.07	1.74	72.29	61	42.86	1.48						
37	0.27	16.2	0.7	78.18	28	169.53	2.22	78	0.54	64.16	1.87	76.94	68	44.21	1.45						
38	0.27	32.71	1.26	76.92	24	352.32	1.97	79	0.54	22.27	1.69	76.94	56	42.02	1.65	1					
39	0.57	2.54	0.67	78.73	36	33.49	2.41	80	0.43	11.71	1.48	75.44	53	40.27	1.67						
40	0.56	3.77	0.22	78.73	33	64.73	2.66	Mean	0.49	2.59	0.08	79.86	15	46.62	2.85						
41	0.52	9.19	0.8	76.98	26	139.52	2.38									-					

YUNYAO LI

HYSPLIT ENSEMBLE RESULTS VS. EPA GROUND OBSERVATION

 The difference among 80 ensemble members are large, which shows the uncertainty of wildfire emission forecast

11/13/2019

The ensemble mean is close to the ground observation.

15

CONCLUSION & FUTURE

- Conclusion:
 - The wildfire pollution forecast is of great uncertainty.
 - We conducted 80 member ensemble forecasts with different combinations of meteorology inputs, plume rise schemes, PBL options, vertical motion options and emission data. The ensemble spread of the 80 is very large. The ensemble mean shows the best performance.
 - Using ensemble mean can reduce the uncertainty of the wildfire generated PM2.5 forecast.
- Future:
 - Reduce the size of the ensemble
 - Implement the Sofiev 2012 scheme in CMAQ

16

