GCOM-W1 AMSR2 Precipitation EDR Update Patrick Meyers & Ralph Ferraro November 7th CICS Science Meeting

Overview

- Global Change Observation Mission
 - Advanced Scanning Microwave Radiometer 2
- Review of NOAA GCOM-W Precipitation EDR
 - Goddard Profiling Algorithm 2010 Version 2
- Incremental improvements for Version 3
- Evaluation of GPROF2017 and JAXA/GSMAP
- Recommendations for AMSR₂ Operations

GCOM-W/AMSR2

- Launched May 2012 into the A-Train
- Conical scanning passive microwave radiometer
 - 1450km swath width; ~10 km sampling
- NOAA Operations commenced Nov 2015

Program Requirements

JPSS Requirements - GCOM Precipitation Type/Rate

EDR Attribute	Threshold	AMSR2 EDR
Applicable conditions		Delivered under "all weather" conditions
Horizontal cell size	5 km land (89 GHz FOV); 10 km ocean (37 GHz FOV size); 5-10 km sampling	5.0 km (land); 10 km (ocean)
Mapping uncertainty, 3 sigma	< 5 km	~2.5 km
Measurement range	o – 50 mm/hr	0 – 75 mm/hr
Measurement precision	0.05 mm/hr	0.01 mm/hr
Measurement uncertainty	2 mm/hr over ocean; 5 mm/hr over land	1.3 mm/hr (ocean) 3.6 mm/hr (land)
Refresh	At least 90% coverage of the globe about every 20 hours (monthly average)	91% every 20 h
Precipitation type	Stratiform or convective	Convective rain rate
Latency	25 minutes	8 min

GPROF2010V2 for AMSR2

- Originally developed for TRMM, adapted for AMSR2
- Land
 - Empirical relationship between T_{89v} and rain rate
 - Convective/Stratiform separation scheme
 - Complex screening procedures for surface contamination
- Ocean
 - Bayesian retrieval based on TPW and SST
 - TRMM Precipitation Radar used as reference
- Coast
 - Conservative combination of Land/Ocean strategies

Validation of Day-1 Precip EDR

Detection Limitations

- False detection of precipitation based on Scattering Index and Tb thresholds
- Apply Turk (2016) cloud-free detection algorithm
- Use last IMS snow analysis for screening

Nighttime False Alarms

Linear Discriminant Analysis for

Cloud-Free Scenes

FAR Reduction

GPROF2010V3 Update

- Recalibrated AMSR₂/TMI conversion
- Introduces LDA for false alarm reduction
- Daily IMS snow product instead of climatology
- Transitions to CMC SST product for ocean retrieval
 - Reynolds SST non-operational with reliability issues
- Updated flagging to reflect increased confidence

Evaluation of GPROF2017

- Developed by NASA/GPM Collaboration w/ NOAA
- Fully Bayesian retrieval
 - Separated by surface type, TPW, and near surface temp
- Trained with GPM Dual-frequency Precipitation Radar
 - GPM orbit inclination improves coverage to mid-lats
- Evaluated as operational replacement for GPROF2010
- Compared to Multi Radar Multi Sensor instantaneous rain rates at the 89GHz footprint size (3x5km)

GPROF2010v3

GPROF2017

GPROF Rain Rate Comparison

Algorithm	POD	FAR	CSI
GPROF2010V3	0.66	0.11	0.61
GPROF2017	o.86	0.09	0.79

Deeper Dive

Time of Year Surface Type

- Rain Rate Dependence
- MRMS Precipitation Type

Monthly Variabilit

Surface Type

Ð ependenc Rain Rate D

D MRMS Precipitation Ty

Notes on GPROF2017

- GPROF2010V3 has lower RMSD, but poor detectability
- GPROF2017 handles light precipitation well, fantastic precipitation detection, better consistency across time and surfaces
- Ongoing work to improve Conv/Strat using environmental conditions [Veljko Petkovic]
- Need to evaluate ancillary products for potential transition into STAR operational framework

Summary & Paths Forward

- Modifications of AMSR2 precipitation algorithm reduce false alarms and improve performance metrics in GPROF2010V3
- GPROF2017 is a giant leap forward, and must be tested to meet NOAA/JPSS operational requirements
- Recent Observations: http://cics.umd.edu/pmeyers/amsr2/
- Leveraging more ancillary data
 - GOES-16 ABI & GLM
 - Environmental information

Thank You

-95

-95

-95

N

ß

-90

-90

-90

Overview of GSMAP

- Radiative transfer technique to match calculated Tbs with observations
- Land
 - Detection of rain area, selection of RTM LUT based on inhomogeneity, retrieval with PCT of scattering signal at 37 and 89 GHz.
- Ocean
 - Similar to Land, plus more information on emission signals at 10-37 GHz.

GPROF/GSMAP Comparison

Algorithm	POD	FAR	CSI
GPROF2010V3	0.83	0.31	0.60
GPROF2017	o.86	0.09	0.79

JAXA/GSMAP

