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Community of plants, 
animals, and 
microorganisms that rely 
partially or completely on 
the availability of 
groundwater to maintain 
its structure and function  
 
  

Spring Fen  

Phreatophytes 

WHAT ARE GROUNDWATER 
DEPENDENT ECOSYSTEMS (GDEs)? 



IMPORTANCE OF GDEs 
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 PROVISIONING SERVICES  
 Food 
 Water 
 Raw Materials  

 REGULATING SERVICES 
 Air Quality Regulation  
 Climate Regulation  
 Moderation of extreme events 
 Erosion Prevention  

 HABITAT SERVICES  
 Maintenance of biodiversity  

 CULTURAL AND AMENITY SERVICES 
 Aesthetic 
 Recreation and Tourism  

 

www.freedrinkingwater.com 
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Strategies that allow for the use of 
groundwater in a way that is compatible 
with the persistence of these ecosystems 

Conservation of GDEs requires:  
2. Characterization of 
groundwater reliance  
3. Characterization of ecological 
response to change  

1. Identification of location and 
extent of existing GDEs 

MOTIVATION 

Foster et al., 2006. World Bank. 
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PROBLEM 1 



PROBLEM 2  
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Hydrologic Unit Code-12; 
mean size = 9,570 ha; Cell 
Size Approx. 10 km  

NATIONAL GROUNDWATER ASSOCIATION  
www.ngwa.org 



POTENTIAL USERS  
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METHODOLOGY 
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METHODOLOGY 
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The ability of GDEs to 
use groundwater is 
related to their root 

system 

Most of the species 
in the world develop 
their  root biomass in 

the first meters of 
soil  

Ecosystems will 
generally use 
resources in 

proportion to their 
availability  

The greater the aridity, 
the higher the 

dependence on the 
groundwater resource 
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MODEL DEVELOPMENT AND TESTING 
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STUDY AREAS 
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RANDOM FOREST FOR MAPPING GDEs  
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 PREDICTION 

 
 
 
 
 
 
 

 Large collection of decorrelated decision trees 
 Each tree is grown with a random subset of predictors – RANDOM 
 A large number of trees are grown (500 to 2000) - FOREST 

 

Predictor Variables  

Known Response Variable  

Ability to predict the 
response when it is 
unkown 
 
CATEGORICAL – 
Classification  
 
CONTINUOUS – 
Regression  
 
 

•Modeling the distribution of GDEs at national to 
global scales is challenging  

•Conventional statistical approaches not enough  
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DAYMET 30 Year Average (1981-2010) of Daily Values (Thornton et al., 2014)    

Digital Elevation Model at 30 m spatial resolution (USGS, 1999)  

Spatial Analyst 
Tools 

PREDICTOR VARIABLES 
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TERRA/MODIS 
MOD15A2 

Resolution: 1 km 
Monthly 

Feb 2000 – Dec 2012 
 

TERRA/MODIS 
MOD11A2 

Resolution: 1 km 
Monthly 

Feb 2000 – Dec 2012 
 

TERRA/MODIS 
MOD13A2 

Resolution: 1 km 
Monthly 

Feb 2000 – Dec 2012 
 

REMOTE SENSING VARIABLES 



RESPONSE VARIABLE 
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Water table depth observations were compiled from USGS 
archives (1927-2010) for more than 550,000 sites 
http://waterdata.usgs.gov/nwis 

 

http://waterdata.usgs.gov/nwis


REGRESSION TREES 
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 Regression Tree for Nevada 
 



RANDOM FOREST RESULTS   
TRUE PREDICTION ERROR   
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Performance Metric  
Regression Procedure 

Random Forest Regression Trees RF (No RS)  
Nevada (n= 1940) 

Mean Absolute Error (MAE)  7.520 10.839 7.630 
Mean Squared Error (MSE)  141.490 221.597 144.948 
Root Mean Squared Error (RMSE) 11.895 14.886 12.039 

Normalized Root Mean Squared Error (NRMSE) 0.118 0.147 0.119 
Pearson's r  0.711 0.467 0.702 
Kendall's Tau  0.555 0.330 0.549 
Spearman's Rho  0.737 0.444 0.733 
R-squared (as squared Pearson's r) 0.505 0.218 0.493 

R-squared (as explained variance/total variance) 0.413 0.235 0.405 
Nash-Sutcliffe Efficiency (NSE) 0.499 0.218 0.474 

California (n= 6296) 
Mean Absolute Error (MAE)  5.301 9.441 5.426 
Mean Squared Error (MSE)  73.279 164.560 75.801 
Root Mean Squared Error (RMSE) 8.560 12.828 8.706 

Normalized Root Mean Squared Error (NRMSE) 0.089 0.133 0.090 
Pearson's r  0.806 0.454 0.799 
Kendall's Tau  0.624 0.322 0.617 
Spearman's Rho  0.801 0.440 0.794 
R-squared (as squared Pearson's r) 0.650 0.207 0.638 

R-squared (as explained variance/total variance) 0.559 0.224 0.542 
Nash-Sutcliffe Efficiency (NSE) 0.647 0.206 0.632 



RANDOM FOREST RESULTS   
VARIABLES ANALYSIS 
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MODEL VALIDATION 
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USGS WATER TABLE 
OBSERVATIONS 

RANDOM FOREST 
RESULTS 

EQUILIBRIUM 
WATER TABLE DEPTH 

(Fan et al., 2013)  

NEVADA (METERS) CALIFORNIA (METERS) 
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GROUNDWATER DEPENDENCE 
POTENTIAL 

WATER TABLE 
DEPTH  

LAND COVER 
(NLCD 2006, USGS)  

MAXIMUM 
ROOTING DEPTH 
(Canadell et al., 

1996)  

WTD/MRD 
POTENTIAL FOR 

GROUNDWATER USE 

PRECIPITATION  

POTENTIAL 
EVAPOTRANSPIRATION 

P/PET 
DEGREE OF THE 
DEPENDENCE 

POTENTIAL OF AN 
ECOSYSTEM TO BE 
GROUNDWATER 

DEPENDENT 
 

GDP 
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CONCLUSIONS 
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 Although regression trees are constructed based on a continuous 
response variable, they still produce piecewise constant models. 
Their clear advantage is that they are easy to interpret and their 
results can provide insights into the nature of the data explored.  
 

 The prediction accuracy of regression trees is reduced in 
comparison with smoother models such as random forest. 
 

 Random Forest Algorithm has been found to provide superior 
predictive capability that could be useful in detecting GDEs. 
 

 The poor spatial coverage of field observations could be 
complemented by geospatial data sets that provide cost-effective 
ways to monitor continuously large and remote areas.  

 
 
 



THANK YOU  
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