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WHAT ARE GROUNDWATER

_ DEPENDENT ECOSYSTEMS SGDESZ?

Community of plants,
animals, and
microorganisms that rely
partially or completely on
the availability of
groundwater to maintain
its structure and function

Phreatophytes
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IMPORTANCE OF GDEs

I
0 PROVISIONING SERVICES

= Food
m Water
m Raw Materials

0 REGULATING SERVICES

m Air Quality Regulation

m Climate Regulation

m Moderation of extreme events
m Erosion Prevention

o HABITAT SERVICES

m Maintenance of biodiversity www.freedrinkingwater.com

0 CULTURAL AND AMENITY SERVICES
m Aesthetic
m Recreation and Tourism
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MOTIVATION

deep waterwells mainly _shallow waterwells
with potential impact on with probable impact on
wetland ecosystem 2 wetland ecosystems 1a/1b

i I l ‘ “n\b AR

clay lens %

[2] wetland ecosystems

AQUIFER

Foster et al., 2006. World Bank.

Conservation of GDEs requires: |

Strategies that allow for the use of
groundwater in a way that is compatible
with the persistence of these ecosystems

2. Characterization of
groundwater reliance

3. Characterization of ecological
response to change
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PROBLEM 1

National studies

Significant efforts to map the location and extent of GDEs at a national scale
have been undertaken in only two countries

SOUTH AFRICA AUSTRALIA

« Colvin et al., (2002) - Operational GDE atlas (SKM, 2012)

- Probability of occurrence of terrestrial GDEs - Previously identified GDEs, available

- Two indicators: Groundwater levels and literature, geospatial layers and remote
duration of the moisture growing season sensing data
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PROBLEM 2

Humber of GDEs
GDE_SUM

Developing a Ground Water Sustainability Strategy

o g Determining which method or combination of methods to employ in a particular situation to promote a
PR v BRED sustainable ground water supply generally should:

Hydrologic Unit Code-12;
mean size = 9,570 ha; Cell +¢| Be made at a local level, whether that is a state, some government subunit, or an aguifer or
Size Approx. 10 km ground water basin level: ana] d@cisinn making provides the necessary 1ﬂexil:-|ilit;,!1tn tailor
the strategies to the specific situation. Ground water resource and climatic variability makes a
one-size-fits-all approach unworkable. Local ground water management plans can incorporate
site-specific information and input from all potentially affected parties. Implementation tools,
such as land use planning or conservation measures, are also available at the local level.

NATIONAL GROUNDWATER ASSOCIATION
WWW.Nngwa.org
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POTENTIAL USERS

? GOE Database Verson :
Home Creste Extesnal Data Database Tools Acrobat
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Sustainable Groundwater Management
Concepts & Tools

Briefing Note Series | Note 15

Groundwater Dependent Ecosystems
the challenge of balanced assessment and adequate conservation

TheNature

Conservancy
Protecting nature. Preserving life.
! . The Nature
» Personnel with skills in botany, soils, hydrology, geology in Oregon is implementing a

comprehensive program to better
understand the links between
groundwater resources and
biodiversity, and to develop and

e Level I: 2-3 people
 Level ll: 3-5 people

® Survey time:

« Level I: less than 2 hours/site test actions that help ensure
* Level Il: 3-6 hours/site conservation of groundwater-
dependent ecosystems and

species.
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METHODOLOGY

GDE MAP
STATISTICAL -,
MODEL | ket 4

IMAGE
PROCESSING

SPOT

IKONOS

E MODIS Geomorphology
T

/ Climate

Landsat
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METHODOLOGY

4 N N N N

Fcomystems il || Theabilyof Goesto | | Mestof thespedes || Thegreater the ariiy
fiesourc‘els in use groundwater is their root biomass i?1 the higher the
. hei related to their root he fi ¢ dependence on the
proportion to their system the first meters o groundwater resource
availability soil

\ AL J o\ /
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MODEL DEVELOPMENT AND TESTING
o

RANDOM FOREST DECISION TREES
| Original Dataset | Scatterplot Matrix |
Vv | Final Dataset (100%) |
| Exploration of Data Outliers Removal |
| Randomly Split Dataset | Final Dataset (100%) | | Randomly Split Dataset |
Training Testing Training Testing
(70%) (30%) (70%) (30%)
Performance
l 2|  Measures
Fit RF Model Fit RF Model Fit Tree
using using Final Model using
Training Set Set (100%) Training Set
(70%) Percentage of Mean of (70%)
J Variance Squared
Explained Residuals

Evalunate Performance of Model }A

I T T T T T T T YT T T T T T T
I
Training Set of ﬁlm

Ly, Predict Predictors (70%) !
WID I

I

I

Training Setof -
Predictors (70%) €L Predicr
WTD

h 4

Testing Set of Predictors I
—> (30%) _\ﬁl True Prediction True Prediction
Error

Error

Testing Set of Predictors (
(30%)

| Compare Results |




STUDY AREAS




NOAAICREST

RANDOM FOREST FOR MAPPING GDEs

o PREDICTION Ability to predict the

response when it is

r unkown
m ﬁ CATEGORICAL —

Predictor Variables

Classification
Known Response Variable

CONTINUOUS —
Regression

o Large collection of decorrelated decision trees
o Each tree is grown with a random subset of predictors — RANDOM
0 Alarge number of trees are grown (500 to 2000) - FOREST
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PREDICTOR VARIABLES

PRECIP
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Digital Elevation Model at 30 m spatial resolution (USGS, 1999)
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Tools
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REMOTE SENSING VARIABLES

S ~— + M + B
| Nl /' VR A B0
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v b -
NDVI LST LA b
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. 0as x w72 . Eehy 008 Pae @ w m |
TERRA/MODIS TERRA/MODIS TERRA/MODIS
MOD13A2 MOD11A2 MOD15A2
Resolution: 1 km Resolution: 1 km Resolution: 1 km
Monthly Monthly Monthly

Feb 2000 - Dec 2012 Feb 2000 — Dec 2012 Feb 2000 — Dec 2012
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RESPONSE VARIABLE

Water table depth observations were compiled from USGS
archives (1927-2010) for more than 550,000 sites
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http://waterdata.usgs.gov/nwis

REGRESSION TREES

16 |
o Regression Tree for Nevada

LST<30 NDVI >= 0.31

Slope < 0.55 SRAD < 375 @g
‘ n=360 8% n=1511 33%

NDVI >=0.23 Slope < 0.51

n=1273 28% n=15 0% ‘ —‘
PRECIP < 129 Slope >=2.3
n=416 9% _‘ n=69 2%
I Tmin < 11 L L
n=229 5% ‘ n=7 0% n=36 1%
@ DEM < 681

n=455 10% |

~Ae A - e 41
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RANDOM FOREST RESULTS

- TRUE PREDICTION ERROR
T

. Regression Procedure
Performance Metric ;
Random Forest Regression Trees RF (No RS)

Nevada (n= 1940)
Mean Absolute Error (MAE) 7.520 10.839 7.630
Mean Squared Error (MSE) 141.490 221.597 144.948
Root Mean Squared Error (RMSE) 11.895 14.886 12.039

Normalized Root Mean Squared Error (NRMSE) 0.118 0.147 0.119
Pearson'sr 0.711 0.467 0.702
Kendall's Tau 0.555 0.330 0.549
Spearman's Rho 0.737 0.444 0.733
R-squared (as squared Pearson's r) 0.505 0.218 0.493

R-squared (as explained variance/total variance) 0.413 0.235 0.405

Nash-Sutcliffe Efficiency (NSE) 0.499 0.218 0.474
California (n= 6296)

Mean Absolute Error (MAE) 5.301 9.441 5.426

Mean Squared Error (MSE) 73.279 164.560 75.801

Root Mean Squared Error (RMSE) 8.560 12.828 8.706

Normalized Root Mean Squared Error (NRMSE) 0.089 0.133 0.090
Pearson's r 0.806 0.454 0.799
Kendall's Tau 0.624 0.322 0.617
Spearman's Rho 0.801 0.440 0.794
R-squared (as squared Pearson's r) 0.650 0.207 0.638

R-squared (as explained variance/total variance) 0.559 0.224 0.542
Nash-Sutcliffe Efficiency (NSE) 0.647 0.206 0.632
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RANDOM FOREST RESULTS
VARIABLES ANALYSIS

Variable Importance Nevsd I
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MODEL VALIDATION

EQUILIBRIUM

USGS WATER TABLE WATER TABLE DEPTH

OBSERVATIONS

RANDOM FOREST
RESULTS

(Fan et al., 2013)

NEVADA (METERS) CALIFORNIA (METERS)
USGS_WTD : USGsS_WTb i
0.38 | 0.82 0.87 || o009
EWT EWT 2
2 2
0.40 :
WTD.RF |

WTD_RF

0.09

'
0

1 1 1 1
10 20 30 40

1
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GROUNDWATER DEPENDENCE
POTENTIAL

WATER TABLE
DEPTH

WTD/MRD
LAND COVER

¢ (NLcD 2006, uscs) ) | A POTENTIAL FOR
GROUNDWATER USE

MAXIMUM
ROOTING DEPTH
(Canadell et al.,

1996)

[

P/PET

DEGREE OF THE
DEPENDENCE

POTENTIAL
EVAPOTRANSPIRATION
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CONCLUSIONS

Although regression trees are constructed based on a continuous
response variable, they still produce piecewise constant models.
Their clear advantage is that they are easy to interpret and their
results can provide insights into the nature of the data explored.

The prediction accuracy of regression trees is reduced in
comparison with smoother models such as random forest.

Random Forest Algorithm has been found to provide superior
predictive capability that could be useful in detecting GDEs.

The poor spatial coverage of field observations could be
complemented by geospatial data sets that provide cost-effective
ways to monitor continuously large and remote areas.



THANK YOU

.




	Using Remote Sensing and Geospatial Data Sets to Delineate Groundwater Dependent Ecosystems in the United States
	WHAT ARE GROUNDWATER DEPENDENT ECOSYSTEMS (GDEs)?
	IMPORTANCE OF GDEs
	MOTIVATION
	PROBLEM 1
	PROBLEM 2 
	POTENTIAL USERS 
	METHODOLOGY
	METHODOLOGY
	MODEL DEVELOPMENT AND TESTING
	STUDY AREAS
	RANDOM FOREST FOR MAPPING GDEs 
	PREDICTOR VARIABLES
	REMOTE SENSING VARIABLES
	RESPONSE VARIABLE
	REGRESSION TREES
	RANDOM FOREST RESULTS  �TRUE PREDICTION ERROR  
	RANDOM FOREST RESULTS  �VARIABLES ANALYSIS
	MODEL VALIDATION
	GROUNDWATER DEPENDENCE POTENTIAL
	REFERENCES
	CONCLUSIONS
	Slide Number 23

