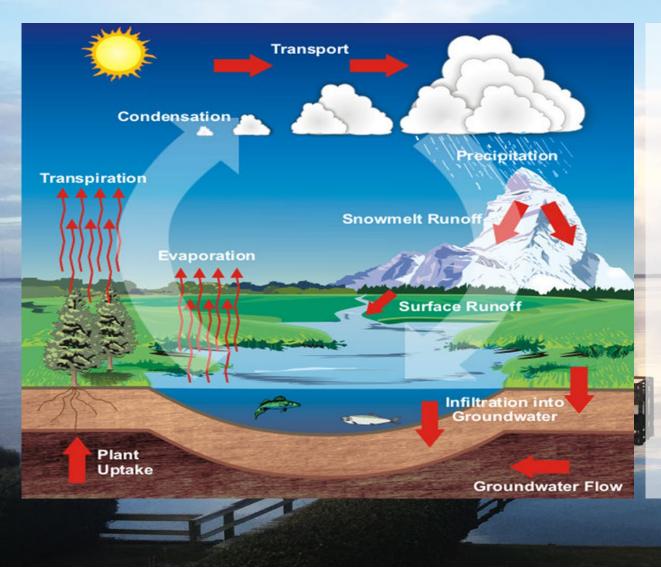
Satellite Hydrological Products -Recent Advances and Applications, Future Challenges

Ralph Ferraro

Satellite Climate Studies Branch, NOAA/NESDIS/STAR


College Park, Maryland

[with contributions from STAR and CISE

Outline

- Importance of the Hydrological Cycle and observational gaps
- Microwave retrievals cornerstone for many variables
- NESDIS product lines and operational product systems
- Emerging products
- Application Examples
- Summary and Future Challenges

The Hydrological Cycle and Observational Gaps

- In-situ data generally covers well populated land regions
- Where we have data, we can measure precipitation, snow depth/water equivalent, soil moisture relatively well
- •Where satellite offer the most help:
 - Where no other data exists remote land regions, open ocean
 - Where in-situ data isn't all that good or is sparse water vapor transport, cloudiness
- •The best solution is an integrated observing approach!

U.S. 2019 Billion-Dollar Weather and Climate Disasters

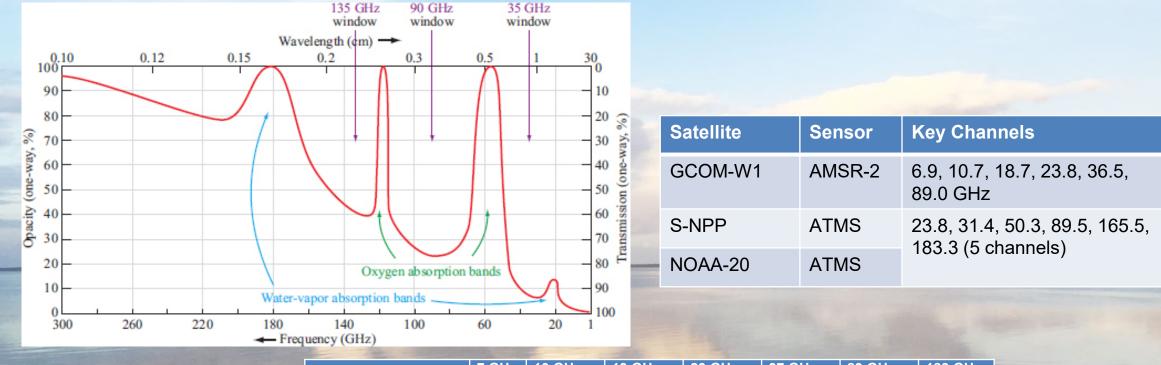
This map denotes the approximate location for each of the 10 separate billion-dollar weather and climate disasters that impacted the United States from Jan–Sept 2019.

12-14 November 2019

2019 CISESS Science Meeting

Satellite Attributes:

Integrated Observing from Space


Geostationary Satellites

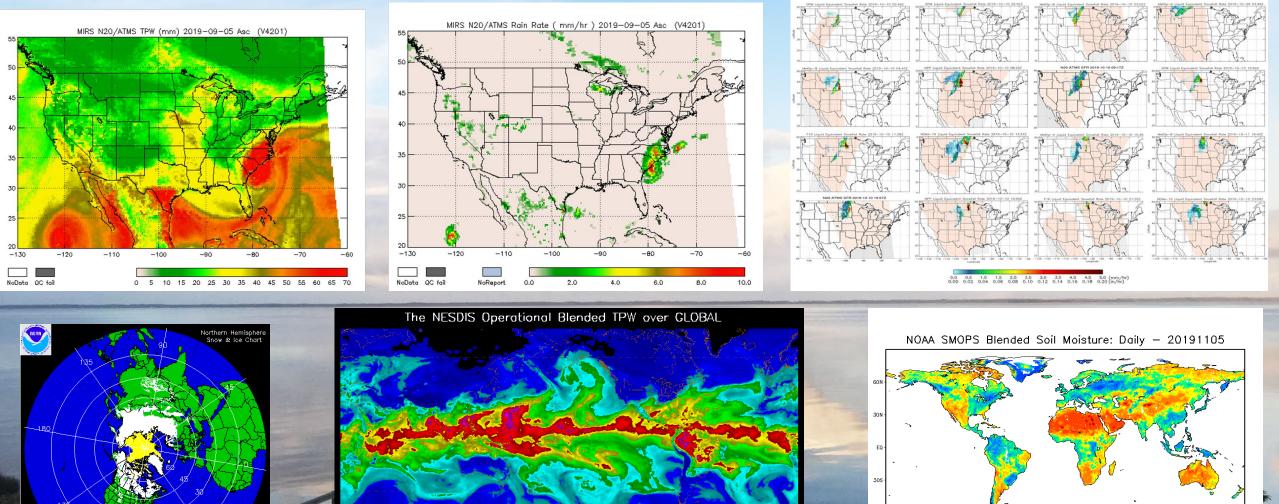
- Fixed location
- Short data latency
- •Visible and IR (and lightning)
 - •Rapid scan available
- Movement
 - •Clouds, water vapor, ocean currents, etc.
- Rapidly changing events hurricanes, thunderstorms, fires, volcanic ash, aerosols,...
- Cloud drift winds/NWP

Low Earth Orbiting Satellites

- •(Near) Global coverage
- •Longer data latency (except CONUS/DB)
- •Wider variety of sensors and applications
 - •Visible and IR (including hyperspectral sounders)
 - Passive (active) MW
- Unique capabilities, including
 - •Vertical profiles of atmos. (NWP)
 - •Atmospheric Chemistry
 - •Vegetation & Soil Moisture
 - •Water Quality
 - •MW cloud penetration, ocean surface

Microwave Sensors – Key to Water Cycle Observations

		<u> 7 GHz </u>	<u> 10 GHz </u>	<u> 19 GHz</u>	<u> 23 GHz </u>	<u> 37 GHz</u>	<u>89 GHz</u>	<u> 183 GHz </u>	
	TPW			0	O	0			
"Typical" MW channel compliments	CLW			0	0	Ø			A.
	Rain Rate		0	Ø		0			1. 1 M
from both imagers and sounders	Snowfall Rate					0	O	0	a an
Jack Markenson and State Sta	SST	O	O	0	0				5%
◎ and O denotes necessary and important channels, respectively	Sea Surface Wind	0	0	0		O			
	Sea Ice		0	Ø		Ø	0		1.50
	Snow Water Equiv. (L)			Ø		O	0		
	Soil moisture (L)	O	O	0					
			and the second	A REAL PROPERTY AND AND A	-	A STORE OF	And Contract of the	16 A	-3°


NOAA Operational Product Systems – LEO and blended focus

- Microwave Integrated Retrieval System (MiRS)
 - <u>http://www.ospo.noaa.gov/Products/atmosphere/mirs/index.html</u>
- Microwave Snowfall Rate (SFR)
 - http://www.ospo.noaa.gov/Products/atmosphere/mirs/index.html
- •NOAA Operational GCOM-W1 AMSR2 Products System (NOGAPS)
 - http://www.ospo.noaa.gov/Products/atmosphere/gpds/
- NESDIS Operational Soil Moisture Products (SMOPS)
 - <u>http://www.ospo.noaa.gov/Products/land/smops/index.html</u>
- Blended TPW/RR
 - http://www.ospo.noaa.gov/Products/atmosphere/brr/
- •VIIRS snow and ice products
 - https://www.star.nesdis.noaa.gov/jpss/EDRs/products_cryosphere.php
 - http://hippy.gina.alaska.edu/distro/ice_eval/
 - http://hippy.gina.alaska.edu/distro/ice_motion_eval/
- Interactive MultiSensor Snow & Ice Mapping System (IMS)
 - http://www.natice.noaa.gov/ims/index.html

Huan Meng, Mark Liu, Jerry Zhan – STAR Chris Grassotti, Jun Dong, Cezar Kongoil, Jifu Yin, Pat Meyers – CISESS

Some Product Examples

Snowfall Rates

12-14 November 2019

Tue Nov 05 2019

SHOW

ice

2019 CISESS Science Meeting

45

60

2019-11-06 1927-0726 UTC

120F

0.4 0.45

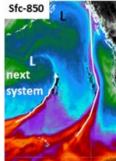
0.01 0.05

0.15

0.2 0.25

0.1

0.3 0.35

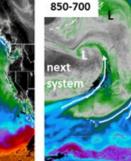

Putting some of the pieces together

John Forsythe, Sheldon Kusselson, CIRA

Pingping Xie, NWS

"Atmospheric Rivers" of High Concentrated Moisture into Alaska at 4 layers For a Week of Excessive Rainfall– Juneau, AK 11 & 13-14 December 2017

CIRA/Colorado State University Advected Layered Precipitable Water (ALPW) for 06 UTC 11 December 2017

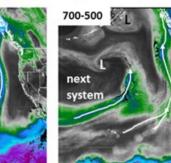


06 UTC 11 December 2017

GOES-15 IR

Avg Wind

flow at layer

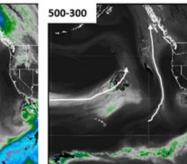


8

NATIONAL CENTERS FOR ENVIRONMENTAL INFORMATION

00 UTC 11 December 2017

GOES-15 VIS


20

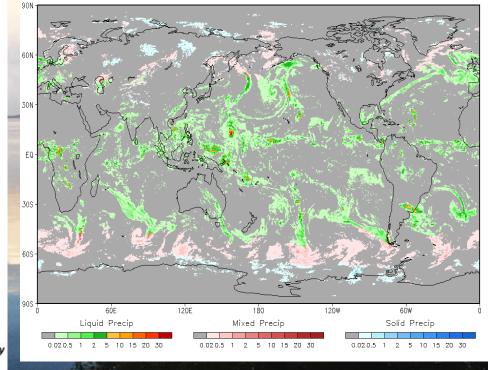
06 UTC 11 December 2017 06 UTC 11 December 2017

CIMSS MIMIC TPW2.0

16

GOES-15 Water Vapor

mm

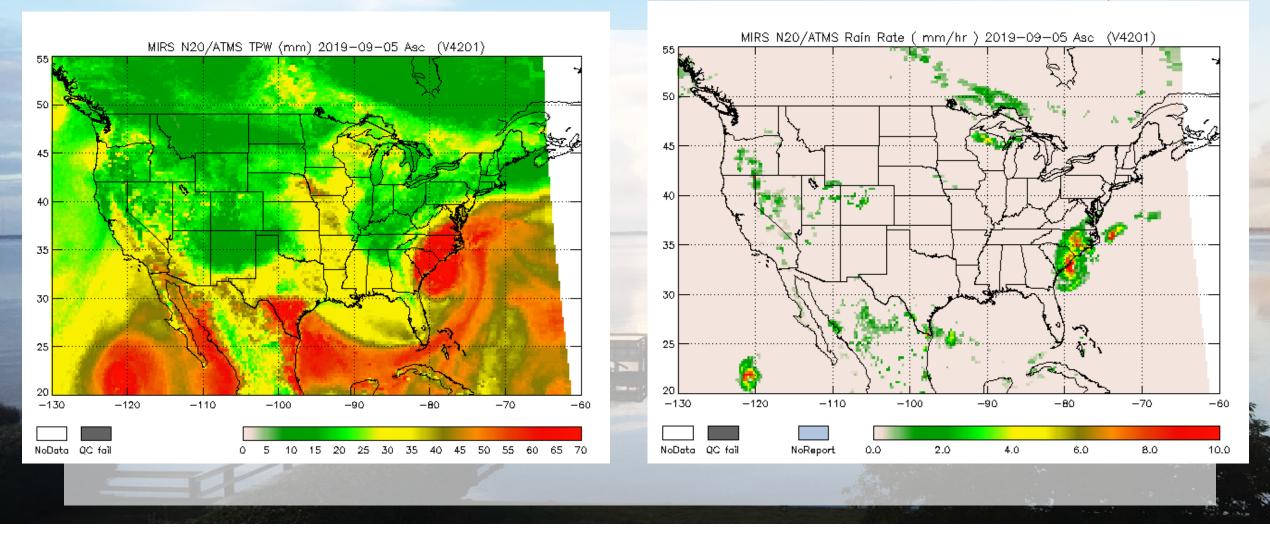

Juneau*/Sitka, AK Precipitation 11 December 2017 1.69"*/1.26" *Record Precip

(Photo by Rashah McChesney/Alaska's Energy Desk) https://www.ktoo.org/2017/12/11/sout heast-alaska-sees-warm-temps-lots-rain/

 Gots/15 vis
 Gots/15 vis
 Gots/15 vis
 Analysis Prepared by

 ftp://ftp.cira.colostate.edu/ftp/Forsythe/LPW/Anim_GIF/2017Dec1121Advect_LPW_ALT_anim.gif
 Sheldon Kusselson

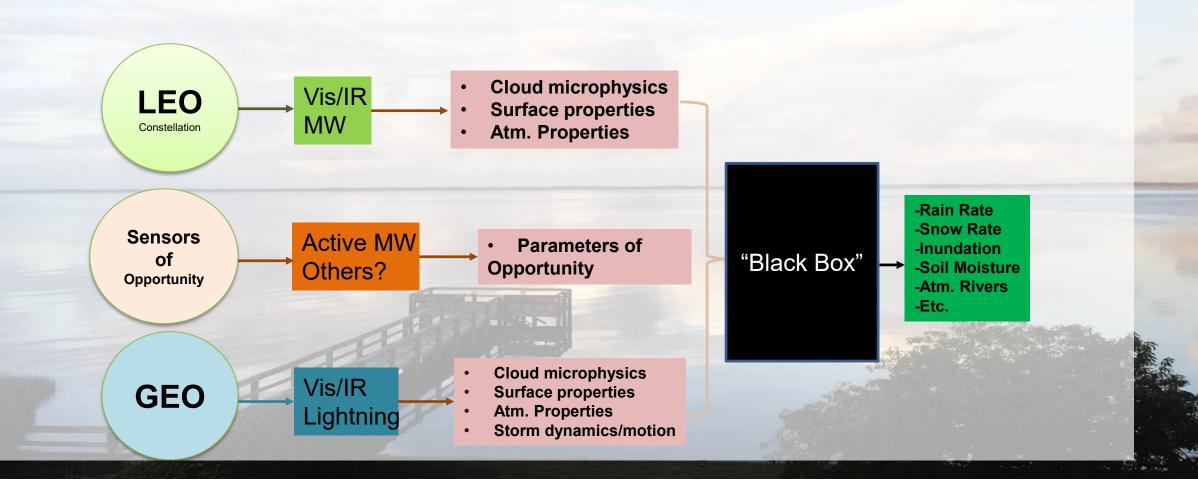
CMORPH-2 Precip Rate @ 2019.11.02 14:00Z (mm/hr)


12-14 November 2019

2019 CISESS Science Meeting

Hurricane Dorian from NOAA-20 – MiRS Products

September 5, 2019


Chris Grassotti, CISESS

Summary and future challenges

- Satellite derived hydrological products provide valuable information in regions which lack in-situ data
- Emerging "blended products" exploit multiple satellites & sensors
 Moving forward:
 - -Exploiting the best information from all sources & thinking "out of the box".
 •Everyone is excited about AI...I am intrigued about the "adaptability" aspect of it all
 -Using other measurements (lightning) and other methods (VR)
 -Can we make all of the parameters self-consistent?

One vision moving forward – exploit "level 2" information from all possible remote sensing observations. To date, we have not done this!

2019 CISESS Science Meeting

Obstacles, to name a few....

Data availability

- -Latency
- -Complex international agreements and restrictions...
- •Satellites "see" different things
 - -View geometery
 - -Spatial resolution
- Likely growing use of private sector data
 - -Cubesats won't be everywhere when you want them
 - -How precise will they be
- •Solutions will require engaging other disciplines and a paradigm shift
 - -VR, cloud computing, etc.
- Resources

-Convincing leaderships that to make advances, its going to require investment