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Global Precipitation Climatology Project (GPCP)

Climatology (1979-2013)
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GPCP is an often-used analysis based on satellite and gauge data (1979-near present).
No TRMM, GPM or Cloudsat data are in the current GPCP.

Adler et al., 2003 J. Hydromet
Huffman et al., 2009 GRL




Absolute Magnitude of Global Precipitation

I e I

Precipitation 2 90 mm/d 2.24 mm/d  2.69 mm/d

*

Current GPCP global long-term numberis 2.69 mm/d +/- ~7%

With the error based on variations among different estimates (including TRMM)
(Adler et al. 2012 JAMC)

But, how well do these very large-scale precipitation numbers
compare with more recent data sets and fit in with other
components of the water cycle?

* New values based on not-released GPCP V2.3 (in testing)—slightly higher (~¥1%) over ocean



Global Mean Annual Water Cycle

Global mean water fluxes (1,000 km?3/yr) at the start of the 215t century
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Best guess estimates from obsenvations and data integrating models

From Rodell et al., 2015 J. Clim.




Tropical Mean (Ocean) Rainfall
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There seems to be a remote sensing consensus emerging of
the mean magnitude of tropical ocean rain—this doesn’t
mean that this is the correct answer, but that current remote
sensing information (TRMM and CloudSat) does not lead to

significant “missed rain” in the tropics.

3.0
(3 years)

*Adler et al.
2009 JMSJ;

Wang et al.,
2014 JICLIM

**Behrangi et

al., 2014 JClim



Global Mean (Ocean) Rainfall Estimates

Behrangi et al. 2014 JClim
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GPCP global ocean number still seems reasonable, but needs to be examined
again with improved data (e.g., GPM, etc.). If there are faults in the global precipitation
magnitude (e.qg., underestimation) it probably doesn’t have to do with light rain or
snow, but perhaps with intense convective rainfall in the tropics.




GPM First Year PreC|p|tat|on from Passive Microwave (GMI) and Radar (DPR)
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GPCP | GMI | DPR
25S5-25N | 3.22 | 3.31 | 3.36

65S-65N | 299 | 284 | 2.70
Preliminary GPM Products

e GPM slightly higher than GPCP in
tropics
® GPM lower in extra-tropics
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Variations in Global Surface Temperature and Precipitation
Trends, Inter-decadal Shifts and ENSO and Volcano Effects

-lllvlllllllllvlll

| —ENSO

0.4} _.ongmol time :series
nGIobaI Surface Temperature
- ‘k M‘\
0.0 » Y(‘ Yo ‘
—0.2} I _Volcono effecl
i(— Climate Shift
—0.4 'E huchon P otubo i 0.1566 K/decade 1
0.1ol_'q‘_l:’--l----l-:-- 1 .:'l - - 1
Global Precipitatian !
0.05¢} *
0.00 [la 5‘}}“ lll”Lﬁi,a |
-0.05¢} .
—0.10.-..:..1....1 0005 mm doy~'/decade

1980 1985 1990

1995 2000 2005 2010

Surface

Temperature:
Trend: .15 C/decade
ENSO: 0.2C
amplitude

Volcano: 0.4C
amplitude

Precipitation:

Trend: ~ zero
ENSO: .05 mm/d
(2%) amplitude
9%/K
Volcano: .09 mm/d
(3%) amplitude
8%/K

New GPCP V2.3
Beta Test
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Patterns of Trends (1979-2013)

Surface Temperature from GISS Water Vapor from SSMI (ocean)
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Precipitation Trend from GPCP
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Variations of ENSO, PDO and AMO Indices During Satellite Era
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Precipitation Trend Patterns During Satellite Era

(a) GPCP (trend) (b) GPCP (trend; PDO)
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Technigue uses PDO and AMO indices and regression analyses

Gu, Adler and Huffman (2015) Climate Dynamics



Trends in Global Precipitation During Satellite Era (1979-2013)

Although the trend in global total precipitation is near
zero (in GPCP analysis), the pattern of observed
~“# regional trends (left panel) is related to Global
Warming (GW) plus inter-decadal signals such as PDO
and AMO (ENSO impact is small). Bottom left panel
| shows trend pattern after PDO effect is removed, a
better estimate of of GW impact on precipitation
regional trends and also a pattern closer to that
predicted by CMIP climate models (bottom right), but
with smaller magnitudes—by factor of 2-3.
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Trends in Precipitation (1900-2010) due to Global Warming

[with aerosol effect taken out]
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Gu and Adler (2015) J. Clim.



GPCP NOAA ICDR (Interim Climate Data Record) for October

GPCP ICDR Precipitation Oct 2015, mm day !

GPCP ICDR Precipitation Anomaly Oct 2015, mm day‘1
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The GPCP Interim CDR for October 2015 continues to show with El Nino-related positive
precipitation anomalies over central and eastern Pacific and negative anomalies over the Maritime
Continent. Additional features include negative anomalies over northern South America and the
Caribbean and positive anomalies over the Arabian Sea and central Africa. A positive anomaly is
evident over Mexico and into the southwest of the U.S.

Comparison of the October anomaly pattern with the typical El Nino pattern for October
can be found on the next slide.

Adler/Wang/Gu/Sapiano U. of Maryland



El Nino minus La Nina Precipitation Anomalies
Top 1/37 —Bottom 1/3" of months Using Nino 3.4 Index
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Precipitation Anomaly Pattern
for October 2015 vs. Pattern for “Mean” El Nino

October 2015 Warm ENSO (October)
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Anomaly pattern for Oct. 2015 (left) shows strong patterns, may of which are similar to
patterns seen in the “mean” pattern for El Nino for October (using Octobers having Nino
3.4 values in the top third of Octobers). The magnitudes of the mean pattern on the right
are smaller due to averaging. Besides the patterns of the tropical Pacific, Maritime
Continent and Amazon, one can also see the positive anomalies over the Arabian Sea and
eastern Africa (e.g., Horn of Africa) and southeastern South America. Across the U.S.
southern states the anomalies are positive, a stronger signal than seen in the mean map.



ENSO Precipitation Index (ESPI)
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Pacific Ocean and Maritime Continent rain anomalies are used to compute various
indices, including ENSO Precipitation Index (ESPI) [Curtis and Adler (2000) J. Clim.]
which shows sharp increase over last several months to near record maximum. The
ESPI is highly correlated to Nino 3.4 (shown above) and SOI, but has given an early
indication of major changes, e.g., jump from Feb. 2015)



Mean El Nino Precipitation Anomalies for November and December
Warm ENSO (November) Warm ENSO (December)
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The figures above show the mean patterns of precipitation anomalies for the months
when Nino 3.4 values were in the top third for that month. Since the current El Nino is
expected to continue these maps represent an estimate of expected anomalies for
November and December, at least due to ENSO. The Arabian Sea and eastern Africa
have positive anomalies and have already been hit by floods during early November in
Somalia and in Yemen with unusual cyclone activity. In southeast South America
(extreme southern Brazil and northeastern Argentina) floods have also occurred
during November, right in the area of the maximum positive anomaly.



Global Flood Monitoring System (GFMS) http://flood.umd.edu/

Global Real-time Flood Calculations Usmg Satellite Rainfall and Hydrological Model
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Global Flood Monitoring System (GFMS) Cited by World Food Program

"The Global Flood Monitoring System
(GEMS) provides one key step further by Flood Detectmn/lntenmt 1%‘]\2;:]’(2?10%0»*9 threshold [mm])
indicating how an excess rainfall event . ' :

IER

will impact river flow, and also whether ]

there is a potential for flooding I

10N 42

downstream away from the heavy rain |

A{]zambique

event," said Emily Niebuhr of the UN’s Eiiﬂngﬂ,’ﬁ RV
World Food Program (WFP) in Rome. 7] jj Lo s
"We check the GFMS nearly every single  ®((h .2/ | | { | | 7
day to monitor current flood concerns, . - - v
and also to assist in discovering new wnre s ol
flood events that may not have been
reported yet or are developing”.
For full article see: http://pmm.nasa.gov/articles/improving-flood-predictions-gpm

Global Flood Monitoring System (GFMS)
Adler/Wu University of Maryland
flood.umd.edu



Recent (27 July — 2 Aug. 2015) Visitors/Users of
GFMS website ( http://flood.umd.edu)
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Zealand

Mon |Tues |'Wed |Thur |Fri |Sat |Sun |Total [Avg
Pageloads 167 | 254| 350( 166|152 | 62| 771,228 175
Unigue Visits 131 188| 267 | 134 97| 44| 57| 918|131
First Time Visits | 100 | 151 235| 100| &4 | 26| 36| 712|102
Returning Visits 31 37 32 34| 33| 18| 21 206 | 29 21



http://flood.umd.edu/

Malaysia Flooding (December 2014)

7-day rain ending 12Z 27 December
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1 km Inundation Estimates
27 December
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Streamflow 12km res, [m"3/s]
09228Dec2014

Comparing the Current Event with
Previous Events

Floods in Malaysia Largest Seen in 17-year
history of GFMS Record—using
streamflow at key river near Thai border

December 2014 event
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SOUth Carolina FIOOdS“EStimated Calculated inundation maps at 1 km resolution showing inundation

: _ widespread on 4 October and condensing into main branches of rivers by
In u ndatlon Ma pS (OCt 4 8) 6 October, with continued, but decreasing flooding today, 8 October.
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Discharge, cubic feet per second
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Streamflow along Congaree River near Columbia
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Streamflow 12km res. [m*3/s]
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Context of Current Flood Event
Compared to Last 15 years

Calculated streamflow at two key points
along Congaree and Santee Rivers over
the last 15 years sets the context of the
current event. At both locations the
current event is the largest, with other
peaks evident in the past. Other points:
1) The estimated satellite rainfall was
lower by about 25% than raingauges on
ground in areas of the highest amounts,
producing an underestimate on peak
streamflow; 2) Downstream toward
Charleston our calculated streamflow is
higher than observed due primarily to
the effect of dams holding back
significant amounts of water, which may
in turn be affecting our estimated
inundation maps—moving water too fast
toward coast.



Summary

Satellite precipitation estimations have allowed for a planetary view of
magnitudes, spatial and temporal variations (even trends) that are due to a
number of major factors on various time scales, including global warming.

“Real-time” global precipitation now being monitored for climate diagnostics in
relation to ENSO and other phenomena.

High-time resolution precipitation information is being used in numerous
applications, including estimating and forecasting floods.

New satellite missions and new ideas and analyses make for a promising future in
this area.
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