

Simulating Regional Climate: What is the role of soil texture?

Eli Dennis and E. Hugo Berbery Cooperative Institute for Satellite Earth System Studies

CISESS Science Meeting 2019

November 13, 2019

College Park, MD

CISESS Local Land–Atmosphere Coupling

- Soil moisture is a key factor for determining the nature of land surface-atmosphere interactions and coupling
- L-A coupling tends to occur in preferred regions
- Yet, models show dispersion in the coupling strength

Land-atmosphere coupling strength (JJA), averaged across AGCMs

2

CESS

What is **soil texture**?

Soil texture refers to the proportions of sand, silt, and clay

How could it be relevant?

The size of each soil grain **determines the hydro-physical properties of the soil** (capillarity, porosity, adhesion, etc.)

How can we relate this to regional climate?

These **hydro-physical properties can dictate the availability of soil moisture**; and therefore determine the nature of the LA coupling

We know that land surface characteristics control the fluxes of moisture to the atmosphere, but the impact of soil texture on land-atmosphere (LA) coupling has not been quantified.

HYPOTHESIS:

 Because soil hydro-physical properties can influence surface states, changing the soil texture will influence the local land-atmosphere (LA) coupling.

CISESS Soil Texture on Maps

Loam

CISESS Experiment

WRF Model Simulations:

15-km horizontal grid spacing51 vertical levels (13 in the lowest 1 km)Simulation length: 92 days (June 1 through August 31)

Relevant parameterizations:

Land Surface Scheme: CLM version 4 PBL Scheme: MYNN2 Surface Layer Scheme: MYNN (compatible with PBL Scheme) Other schemes are available if you are curious.

Soil Texture Datasets:

- 1. USDA STATSGO (WRF default)
- 2. GSDE from Beijing Normal University

Soil Categories (Texture)

Look-up Table of

Hydraulic Parameters: Wilting point, Field Capacity,

...

Soil Properties in a look-up table

soil texture category	wilting point	field capacity	porosity	saturated hydraulic conductivity (x1000)	b	matric potential at saturation
sand	0.01	0.192	0.339	0.0466	2.79	0.069
loamy sand	0.028	0.283	0.421	0.0141	4.26	0.036
sandy loam	0.047	0.312	0.434	0.00523	4.74	0.141
silt loam	0.084	0.36	0.476	0.00281	5.33	0.759
silt	0.061	0.347	0.484	0.00218	3.86	0.955
loam	0.066	0.329	0.439	0.00338	5.25	0.355
sandy clay loam	0.069	0.315	0.404	0.00445	6.77	0.135
silty clay loam	0.12	0.387	0.464	0.00203	8.72	0.617
clay loam	0.103	0.382	0.465	0.00245	8.17	0.263
sandy clay	0.1	0.338	0.406	0.00722	10.73	0.098
silty clay	0.126	0.404	0.468	0.00134	10.39	0.324
clay	0.138	0.412	0.468	0.000974	11.55	0.468

Parameterizations:

Surface Fluxes, Runoff,

•••

Land Surface Models have substantial simplifications

CISESS Soil Hydro-physical Properties

- Ordered from largest grain size to smallest grain size (left to right)
- Matric potential describes how much energy is required to remove moisture from the soil system

$$\Psi = \Psi_{sat} \; (\frac{\theta}{\theta_s})^{-b}$$

 $\Psi(0.192)_{sand} = --0.33 \text{ J/kg}$

 $\Psi(0.192)_{clay} = --13786 \text{ J/kg}$

CSESS Results

CSESS Continental Results

The values represent seasonal differences (GSDE–default)

- Finer soil particles retain soil moisture more vigorously
- Energy that does not contribute to removing moisture gets partitioned into sensible heat flux
- Temperature and mixing ratio at 2-m, generally follows the pattern of the surface fluxes (though not perfectly due to advective processes)
- Integrative processes (i.e., precip and boundary layer evolution) also follow intuitive patterns, though the correspondence is more complicated.

CSESS Results: SGP

Top left figure shows soil texture transitions between datasets from default to GSDE

All other figures show differences (GSDE—default)

Matric Potential given by:

$$\Psi = \Psi_{sat} \left(\frac{\theta}{\theta_s} \right)^{-b}$$

Neither soil moisture, nor soil parameters solely control surface fluxes, but rather the **combination of both** is important

Grain size changes From default to GSDE

rom default to GSDE

fine to coarse

slit loam to loan

silty clay loam to clay loam

coarse to fine

- silt loam to silty clay loam
- loam to clay loam
- silt loam to clay loam
- sandy loam to clay loam
- sandy loam to loam

CISESS Results: SGP

Solid lines indicate full arealaveraged diurnal cycle

Dashed lines only include specific soil categories

- Specific categories accentuate the areal averages
- Maximum latent heat flux differences between specific categories is about 75 W m⁻²

CESSS Results: Mex.

The majority of the region underwent an increase in soil grain size (loam to sandy loam, gray)

Example 1:

Despite minimal differences in soil moisture, the fluxes **were different** because parameters allowed the soil moisture to be emphasized

Example 2:

Despite substantial differences in soil moisture, the fluxes **were NOT different** because parameters overshadowed those impacts

 Important differences in soil texture and the degree of heterogeneity were found over the Great Plains and Central Mexico

2. Parameters associated with soil texture control the availability of soil moisture; soils with finer grains retain water more strongly than coarser grain soils

CISESS Conclusions (2 of 2)

3. Surface fluxes and near surface variables respond to the changes in soil properties, and drive the evolution of the boundary layer facilitating feedbacks that influence regional climate

Therefore, because soil properties control surface fluxes, the use of different soil texture databases was able to influence the local land surface-atmosphere (LA) coupling

Thank you.

C SESS Next step: Non-Local, dynamic coupling

The Great Plains Low-level Jet is a prominent feature in the US Great Plains linking large-scale circulation to regional climate

Physically, it is a nocturnal low-level, southerly wind maxima

Hypothesis:

Because soil properties influence the diurnal PBL evolution, they will also modulate low-levels jets.

