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«1Y33y Local Land—Atmosphere Coupling

Soil moisture is a key factor for
determining the nature of land
surface—atmosphere interactions
and coupling

L-A coupling tends to occur in
preferred regions

Yet, models show dispersion in the
coupling strength
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(Koster et al 2004)



What is soil texture?

Soil texture refers to the proportions of sand,
silt, and clay

How could it be relevant?

The size of each soil grain determines the
hydr.o-p.hy5|cal pr.opertles <_)f the soil A = ,
(capillarity, porosity, adhesion, etc.) SRS ’\— .

10

How can we relate this to regional climate?

These hydro-physical properties can dictate the availability of soil moisture; and
therefore determine the nature of the LA coupling



We know that land surface characteristics control the fluxes of moisture to the
atmosphere, but the impact of soil texture on land-atmosphere (LA) coupling has not
been quantified.

HYPOTHESIS:

® Because soil hydro-physical properties can influence surface states,
changing the soil texture will influence the local land-atmosphere (LA)
coupling.




#1313 Soil Texture on Maps
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<1334 Experiment

WRF Model Simulations:

15-km horizontal grid spacing
51 vertical levels (13 in the lowest 1 km)
Simulation length: 92 days (June 1 through August 31)

Relevant parameterizations:

Land Surface Scheme: CLM version 4
PBL Scheme: MYNN2

Surface Layer Scheme: MYNN (compatible with PBL Scheme)

Other schemes are available if you are curious.
Soil Texture Datasets:
1. USDA STATSGO (WRF default)

2. GSDE from Beijing Normal University
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Soil Categories
(Texture)

STATSGO soil texture on NLDAS grid

>
—_
(@)
o1}
[}
)
©
(@]
o
(%]
L;:ﬁy L:::n Loam EE?" SEI';' Clay Bedrock

Look-up Table of

Hydraulic Parameters
Wilting point,
Field Capacity,

Soil Properties in a look-up table

soil texture wilting | field porosity | saturated b matric

category point | capacity hydraulic potential at
conductivity saturation
(x1000)

sand 0.01 0.192 0.339 0.0466 279 | 0.069

Toamy sand 0.028 0.283 0.421 0.0141 126 [ 0.03

sandy loam 0.047 0.312 0.434 0.00523 4.74 0.141

silt loam 0.081 0.36 0.476 0.00281 533 | 0.750

silt 0.061 0.347 0.484 0.00218 3.86 0.955

Toam 0.066 0.329 0.439 0.00338 525 | 0.35%

sandy clay loam | 0.069 0315 0.404 0.00445 6.77 | 0.135

silty clay loam | 0.12 0.387 0.161 0.00203 872 0617

clay loam 0.103 0.382 0.465 0.00245 8.17 0.263

sandy clay 01 0.338 0.406 0.00722 10.73 | 0.098

silty clay 0.126 0.404 0.468 0.00134 1039|0324

clay 0.138 0412 0.468 0.000071 1155 | 0.468

Parameterizations:

Surface Fluxes,
Runoff,
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Land Surface Models have substantial simplifications
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14334 Continental Results

The values represent seasonal differences
(GSDE—default)

Finer soil particles retain soil moisture
more vigorously

Energy that does not contribute to
removing moisture gets partitioned into
sensible heat flux

Temperature and mixing ratio at 2-m,
generally follows the pattern of the
surface fluxes (though not perfectly due
to advective processes)

Integrative processes (i.e., precip and
boundary layer evolution) also follow
intuitive patterns, though the

correspondence is more complicated.




&1y 33y Results: SGP

Top left figure shows soil texture
transitions between datasets from
default to GSDE

All other figures show differences
(GSDE—default)

Matric Potential given by:

Y= Wqe g)_b
s

Neither soil moisture, nor soil
parameters solely control surface
fluxes, but rather the combination of
both is important

Grain size changes
From default to GSDE
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Solid lines indicate full areal-
averaged diurnal cycle

Dashed lines only include specific
soil categories

* Specific categories
accentuate the areal averages

*  Maximum latent heat flux
differences between specific
categories is about 75 W m2

<33y Results: SGP
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3331 Results: Mex.

The majority of the region underwent an
increase in soil grain size (loam to sandy loam,

gray)

Example 1:

Despite minimal differences in soil moisture,
the fluxes were different because parameters
allowed the soil moisture to be emphasized

Example 2:

Despite substantial differences in soil moisture,
the fluxes were NOT different because
parameters overshadowed those impacts
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#3339 Conclusions (1 of 2)

1. Important differences in soil texture and the degree of
heterogeneity were found over the Great Plains and Central
Mexico

2. Parameters associated with soil texture control the
availability of soil moisture; soils with finer grains retain water
more strongly than coarser grain soils
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31 Conclusions (2 of 2) s
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3. Surface fluxes and near surface variables respond to the changes
in soil properties, and drive the evolution of the boundary layer
facilitating feedbacks that influence regional climate

Therefore, because soil properties control surface fluxes, the use of
different soil texture databases was able to influence the local land
surface—atmosphere (LA) coupling
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Thank you.



The Great Plains Low-level Jet is a
prominent feature in the US Great

Plains linking large-scale circulation ]
to regional climate

Physically, it is a nocturnal low-level,
southerly wind maxima

Surface Fluxes

Hypothesis:

131 Next step: Non-Local, dynamic coupling

PBL Structure

Because soil properties influence the diurnal PBL
evolution, they will also modulate low-levels jets.

Wind Speed
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