



## The GOES-R Land Surface Temperature Product

Peng Yu<sup>1</sup>, Yunyue Yu<sup>2</sup>, Heshun Wang<sup>1</sup>, and Yuling Liu<sup>1</sup>

ESSIC/CISESS, University of Maryland
 SMCD/NESDIS/NOAA







- Overview
- GOES-R LST Product and its Current Status
- Challenges and Strategies
- Summary



## **GOES-R** Overview







#### Advanced Baseline Imager -Scan Modes





SAMPLE FULL DISK FROM GOES-EAST 23 JUL 05 17:45 Z Maines



SAMPLE MESOSCALE FROM GOES-EAST 23 JUL 05 17:45 Z MOIDAS



AMPLE CONUS 🛛 FROM GOES-ÉAST 23 JUL 05 17:45 Z Me





There are three scan modes for the ABI:

- Mode 3: Full disk images every 15 minutes + 5 min CONUS images + two 1-min mesoscale images
- Mode 4: Continuous Full disk every 5 minutes
- Mode 6 (Default): Full disk images every 10 minutes + 5 min CONUS images + two 1-min mesoscale images

ABI scans about 5 times faster than the previous GOES imager



## **GOES-R LST Product**

#### CISESS Cooperative Institute for Satellite Earth System Studies

#### LST retrieval is performed

- » Good input data
- » Land surface pixels
- » "clear" and "probably clear" pixels

#### Cloud detection

ABI Cloud Mask EDR

#### Atmospheric absorption correction

- » Split-window bands Brightness Temperature difference
- » Path correction term
- » Algorithm coefficients stratification for different atmospheric conditions (TPW EDR and NWP)

#### Surface emissivity variation

» Develop dynamic emissivity data for split-window bands

#### **Quality control flags**

- » Data Quality Flag (DQF)
- » Product Quality Indicator (PQI)





#### **GOES-East**

#### **GOES-West**



## **In-situ Ground Observations**

CISESS Cooperative Institute for Satellite Earth System Studies

- » Surface Radiation Budget
  Network (SURFRAD) seven
  operational sites in CONUS
  - Radiometer measuring broadband radiation every minute
  - Available within a day or two of observation
  - Instrument calibrated annually and well maintained

 $-LST = \frac{F\uparrow - (1-\varepsilon)F\downarrow}{\varepsilon\sigma}$ 

» We need high-quality data , especially outside US, e.g., in Central and South America





#### **Product Validation Results** -GOES-16 CONUS LST







#### **Product Validation Results** -GOES-17 CONUS LST



CISESS Cooperative Institute for Satellite Earth System Studies



## **Product Validation Results** -FD & MESO



| Satellite | Site             | MESO |                 |                  | Full Disk |                 |                  |
|-----------|------------------|------|-----------------|------------------|-----------|-----------------|------------------|
|           |                  | Num  | Accuracy<br>(K) | Precision<br>(K) | Num       | Accuracy<br>(K) | Precision<br>(K) |
| GOES-16   | Bondville_IL     | 1012 | 0.04            | 2.27             | 1100      | -0.17           | 2.08             |
|           | Boulder_CO       | 108  | -0.98           | 1.95             | 767       | -1.54           | 2.01             |
|           | Desert_Rock_NV   | 112  | -4.82           | 1.36             | 358       | -6.00           | 1.79             |
|           | Fort_Peck_MT     | 29   | -1.09           | 1.65             | 784       | -1.04           | 1.88             |
|           | Goodwin_Creek_MS | 1169 | 0.68            | 2.37             | 1180      | 3.35            | 2.67             |
|           | Penn_State_PA    | 602  | 0.65            | 2.39             | 701       | 1.52            | 2.16             |
|           | Sioux_Falls_SD   | 217  | -0.57           | 1.95             | 1104      | -0.24           | 1.60             |
|           | Overall          | 3249 | 0.13            | 2.27             | 5994      | 0.07            | 2.09             |
| GOES-17   | Bondville_IL     | 24   | 0.14            | 2.69             | 470       | -0.53           | 1.25             |
|           | Boulder_CO       | 371  | -1.55           | 1.67             | 357       | -0.71           | 1.73             |
|           | Desert_Rock_NV   | 738  | -3.56           | 2.15             | 278       | -4.65           | 2.10             |
|           | Fort_Peck_MT     | 2    | -1.89           | 0.11             | 326       | -0.48           | 2.21             |
|           | Goodwin_Creek_MS | 43   | 0.96            | 3.43             | 325       | -0.33           | 3.18             |
|           | Penn_State_PA    | 18   | 0.20            | 1.62             | 76        | 0.60            | 1.55             |
|           | Sioux_Falls_SD   | 0    | NA              | NA               | 666       | 0.12            | 1.89             |
|           | Overall          | 1196 | -2.64           | 2.01             | 2498      | -0.77           | 1.80             |



## **Inter-Sensor LST Comparison**



- » GOES-16 ABI LST;
- » LSTs from TERRA MODIS, AQUA MODIS, and SNPP VIIRS
- 24 days data are used in the comparison (one day per week, 2017.05 ~ 2017.10);



CISESS

Cooperative Institute for Satellite Earth System Studies



#### LST Inter-Sensor Comparison: GOES-16 v.s. Other sensors





## **Major Challenges**

CISESS Cooperative Institute for Satellite Earth System Studies

## Product Quality

- » Algorithm improvement
- » Emissivity quality improvement

## In-situ observations

- » High-quality in-situ stations are limited
- » In-situ observations' representativeness
- GOES-17 ABI Loop heat pipe overheating
  - » Impact on each band is different
  - » How to improve the overall data quality and usability

## **Enterprise Algorithm**

IOAA





#### **Desert Rock Validation Results CISESS** -Multiple Sensors



NOAA

- **GOES-16 LST underestimate at Desert Rock site**
- Four years LST time series from AQUA, TERRA, and SNPP are compared to Desert Rock LST as a comparison

Cooperative Institute for Satellite Earth System Studies

SNPP VIIRS LST performs much better with an underestimate as low as 0.31 k Surface Type dependent algorithm





### Validation Challenge -Desert Rock

288

286

284

CISESS Cooperative Institute for Satellite Earth System Studies

#### 30m Landsat 8 BT11 (B10) at Desert Rock, 20180128

#### Desert Rock Landsat 8 BT11 Image Left: GOES16; Center: GOES17ABI;Right: GOES17 Test



# COES16 ABI at Desert Rock GOES17 ABI at Desert Rock GOES17 Test ABI at Desert Rock

#### Red: GOES-East; Blue: GOES-West; Yellow: GOES17-Test



#### Aggregated ABI BT – Site L8 BT G16 East (-1.18K); G17 West(-0.54K); G17 Test(-0.71K)



### Validation Challenge -Goodwin Creek

Goodwin Creek (Red: G16 East; Blue: G17 West; Yellow: G17 Test)

NOAA



- Validation based on direct comparison with in-situ observation: pixel to point
- Site representativeness of the satellite pixel is key: good homogeneity required
- The complicated surface type shown on the right leads to high uncertainty when comparing the point temperature to pixel temperature
- Full Disk LST has 10 km resolution at nadir, a homogeneous site in such a large area is not available in CONUS.

#### L8 BT11 at Goodwin Creek, 20180607



#### Goodwin Creek Landsat 8 BT11 Image Left: GOES16 East; Right: GOES17 Test





## **GOES-17 Loop Heat Pipe Overheating Issue**

CISESS Cooperative Institute for Satellite Earth System Studies





**GOES-TES**T

2018-10-20

GOES-17 ABI Full Disk LST 2018-10-20T00:00:37.9Z - 2018-10-20T00:11:14.6Z

## FPM Temperature Impact

GOES-17 ABI CONUS LST 2018-10-20T00:02:18.9Z - 2018-10-20T00:04:56.2Z



220 240 260 280 300 320 Temperature (K)

## G17 FPM Temp



GOES-17 ABI CONUS LST 2019-03-15T00:02:18.9Z - 2019-03-15T00:04:56.2Z

**GOES-WEST** 

2019-03-15



Temperature (K)

GOES-17 ABI Full Disk LST 2019-03-15T00:00:38.0Z - 2019-03-15T00:11:14.7Z

AL

## **Mitigation Algorithm**

#### CISESS Cooperative Institute for Satellite Earth System Studies



Alternative band is being used in mitigation

IOAA



## **Comparison with GOES-East LST**

- Level-1b data from GOES-17
- Level-2 inputs (Cloud Mask, Total Precipitable Water) from GOES-16 projected to GOES-17 grids
- Reference: Enterprise GOES-16 LST projected to GOES-17 grids (Top right)
- Algorithms: baseline (Left), enterprise (Center), and mitigation (Right)

GOES-17 LST (Reprocessed, g16 TPW) 201810220002 UTC

GOES-17 LST (Enterprise, g16 TPW) 201810220002 UTC











GOES-17 LST (Mitigation, g16 TPW) 201810220002 UTC





## Summary

CISESS Cooperative Institute for Satellite Earth System Studies

- GOES-16 LST and GOES-17 LST (during "cool" period only) reached provisional maturity in March 2018 and June 2019, respectively.
  - » All products, FD, CONUS, and MESOs, meet the mission requirement based on the validation results.
- An enterprise LST retrieval algorithm applicable to multiple sensors have been developed and delivered.
  - » The algorithm outperforms the current baseline algorithm.
- To address the loop heat pipe overheating issue, an mitigation algorithm has been developed and tested
  - » The product quality is improved
  - » The data usable period increases.
- The Enterprise/Mitigation algorithms are expected to be implemented in the ground system in June 2020.