2017 CICS Science Conference

Radiance Based VIIRS LST Product Validation

<u>Heshun Wang^{1,2}, Yunyue Yu², Yuling Liu^{1,2}, Peng Yu^{1,2}</u>

Cooperative Institute for Climate and Satellites, University of Maryland
Center for Satellite Applications and Research, NOAA NESDIS

November 8, 2017

Introduction

- □ Atmospheric Profile Evaluation.
- □ VIIRS LST Radiance based validation
- □ Summary and ongoing work

LEO:

GEO:

JPSS and GOES-R Operational LST Product

Suomi NPP VIIRS Global Land Surface Temperature - Daytime - IDPS 31 Jul 2016

GOES-16 Full Disk LST

Temperature Based LST Validation

- Convincing & Straightforward
- \blacktriangleright Representative: Point (1-100m) \rightarrow Pixel (1-2km)
- Limited at global scale

■ LST Retrieval: $R + \varepsilon + TPW \rightarrow Ts$

Take advantage of absorption difference, Don't need atmospheric details.

Radiance Based LST: R+ε+(Ta,w)(p)→ T_{RB}

Need atmospheric details and RT models simulation to get T_{RB} (e.g. MODTRAN, CRTM)

M15 (11 μm) used for R-Based LST determination for its higher transmittance than 12 μm

Brightness Temperature (BT) difference (BT11-BT12) is adopted for profile check.

- Assumed Emissivity difference is accurate.
- > More clear \rightarrow smaller BT Diff.

➢ Profile accurate → simulated BT Diff close to Satellite BT Diff

VIIRS M15, M16 and the transmittance

$$\delta(dBT) = (BT_{11}^{Simu} - BT_{12}^{Simu}) - (BT_{11}^{Sate} - BT_{12}^{Sate})$$

VIIRS M15 Emissivity @20170409

- Based on modified vegetation cover method
- Daily product
- Global coverage
- Resolution: 1km (0.009 Degree)
 - 4 narrow bands (VIIRS & ABI SW) + 1 broadband.
- Accuracy < 0.015</p>

	NOAA NCEP GDAS	NOAA NCEP GDAS	ECMWF ERA- Interim	NASA MERRA-2
Range	1979-present	201507-present	1979-present	1980-present
Spatial Resolution	1*1	0.25*0.25	0.75*0.75	0.625*0.5
Temporal Resolution	6 hour	6 hour	6 hour	3 hour
Vertical Resolution	26 pressure levels	31 pressure levels	37 pressure levels	42 pressure levels
Latency	Daily	Daily	2 Months	1 Month

Reference Profile: Upper Air Sounding Data (0:00, 12:00 UTC, Regular)

Time Range: 20160101 - 20161231

Stations: 7 stations near SURFRAD

Criteria : TPW, BT11 & BT12

Sounding & SURFRAD Stations

NWS Rawinsonde Network

SURFRAD Station

Index	SURFRAD	Lon	Lat	Rawinsonde	Lon	Lat
1	BON	-88.37	40.053	ILX	-89.33	40.15
2	TBL	-105.235	40.124	DNR	-104.87	39.77
3	DRA	-116.014	36.624	VEF	-115.18	36.05
4	FPK	-105.098	48.308	GGW	-106.61	48.21
5	GWN	-89.873	34.253	JAN	-90.08	32.32
6	PSU	-77.93	40.722	PIT	-80.22	40.53
7	FSX	-96.623	43.727	ABR	-98.43	45.45

Profiles Data

- •7 Sounding Stations near SURFRAD
- •Time range: 20160101 20161231 (2993 matchup data pairs)
- •4 analysis products (NCEP p25, NCEP 1deg, ECMWF & MERRA2)

Comparison Items

- •Simulating VIIRS BT11 & BT12 using MODTRAN
- •Surface temperature is bottom air temperature + 5
- •Surface emissivity is 0.97 & 0.98 for M15 & 16, respectively
- •Satellite zenith angle set to 25 degree.
- •Evaluating the profiles by TPW, BT11 and BT12.

TPW Comparison

BT Difference Comparison

LST algorithm for VIIRS

- IDPS Split Window Algorithm (Surface type dependant)
- Enterprise Split Window Algorithm (Emissivity explicit)

Validation Sites

- 7 Sites of SURFRAD
- 20160101-20161231
- Only clear sky condition.

Profile Screening

Enterprise VIIRS LST R-Based Validation @ Bondville (2016) Δ(BT11-BT12) and R-Based LST Validation result

R-Based validation result significantly improve after profile screening using δ BT Difference, (-0.5K, 0.5K).

AND ATROCKING

R-Based Validation over SURFRAD

IDPS	Bias(D)	STD(D)	RMSE(D)	Num(D)	Bias(N)	STD(N)	RMSE(N)	Num(N)
BON	-1.25	0.63	1.40	33	-0.03	0.77	0.77	113
TBL	-0.79	0.64	1.00	32	0.32	0.96	1.00	113
DRA	-1.14	0.50	1.25	80	1.32	0.49	1.40	78
FPK	-0.50	0.90	1.03	46	0.90	0.98	1.33	117
GWN	-0.90	0.34	0.96	37	-0.12	0.68	0.68	125
PSU	-0.57	0.52	0.76	17	0.45	0.58	0.73	61
SXF	-0.72	1.15	1.34	43	0.08	0.74	0.75	131

Enterp.	Bias(D)	STD(D)	RMSE(D)	Num(D)	Bias(N)	STD(N)	RMSE(N)	Num(N)
BON	-0.53	0.66	0.84	33	-0.23	0.73	0.76	113
TBL	0.15	0.36	0.39	32	0.12	0.43	0.45	113
DRA	-0.74	0.59	0.95	80	-0.41	0.57	0.70	78
FPK	0.42	0.78	0.88	46	0.26	0.58	0.64	117
GWN	-0.14	0.34	0.36	37	0.06	0.91	0.91	125
PSU	0.14	0.50	0.51	17	0.07	0.65	0.64	61
SXF	0.26	0.85	0.88	43	0.29	0.72	0.77	131

T-Based and R-Based Validation

SURFRAD
FPK Site
Left: T-Based
Right: R-Based

SURFRAD
TBL Site
Left: T-Based
Right: R-Based

Desert Rock Site

SURFRAD Desert Rock Site

(2016)

Enterprise VIIRS LST R-Based (2016)

IDPS VIIRS LST has negative bias at daytime and positive bias at nighttime, while Enterprise VIIRS LST has good results!

ASM IDPS (201504-201603)

ASM Enterprise (201504-201603)

IDPS has bias at day and night, Enterprise works well.

R-Based LST at Granule Level

2

0

-1

-2

-3

VIIRS R-Based LST @20160114 19:38 UTC

R-Based LST (K)

R-Based LST (Upper Left) compared with VIIRS EDR LST (difference: Upper Right)

■Bias = -0.97K; STD = 0.87K; RMSE = 1.30K; N = 3,169,359

NCEP 0.25° reanalysis profile has the best accuracy for R-Based Validation, before July 2015, NCEP 1° will substitute.
Long time series R-Based Validation indicates VIIRS LST has a good accuracy over SURFRAD sites.
For the barren sites, R-based validation shows the improvement of Enterprise algorithm over operation algorithm.

 Since R-Based simulation using MODTRAN is timeconsuming, switch to CRTM for granule level validation.
More global LST validation over various surface types will be performed, not only for VIIRS, but also for GOES-R/ABI.
A R-based validation package is under developing for LST product monitoring.

Heshun Wang (<u>hswang@umd.edu</u>; <u>heshun.wang@noaa.gov</u>)