

The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction

Jieshun Zhu

CICS-MD/ESSIC and Climate Prediction Center/NCEP/NOAA

In collaborations with A. Kumar¹, B. Huang², M. A. Balmaseda³, Z.-Z. Hu¹, L. Marx² and J. L. Kinter²

¹CPC, ²COLA/GMU, and ³ECMWF

Zhu, J., A. Kumar, B. Huang, M. A. Balmaseda, Z.-Z. Hu, L. Marx and J. L.Kinter III, 2016: The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction. *Sci. Rep.*, 6: 19677. DOI:10.1038/srep19677.

Anomalous Depth (m) of 20C Isotherm Averaged in [120E-80W, 5S-5N]

By courtesy of Dr. Z.-Z. Hu

CFSR: Westerly wind burst (WWB) events

a) stronger in 1997-98 than in 1982-83b) strong multi-WWB events in 1997-98

IRI NINO3.4 Forecast Plum

Early-Apr CPC/IRI Consensus Probabilistic ENSO Forecast 100 ENSO state based on NINO3.4 SST Anomaly 90 Neutral ENSO: -0.5°C to 0.5°C El Nino 80 Neutral 70 La Nina Probability (%) 60 50 Climatological Probability: 40 — El Nino Neutral 30 — La Nina 20 10 MAM AMJ MJJ JJA JAS ASO SON OND NDJ 2014 Time Period 2014

Mid-Apr IRI/CPC Plume-Based Probabilistic ENSO Forecast

- All models predicted a warming tendency and a majority of them predicted an El Nino in second half of 2014.

- Consensus probabilistic forecasts favor a warm phase of ENSO since JJA 2014.

- NOAA "ENSO Diagnostic Discussion" on 8 May 2014 issued "El Nino Watch" and suggests that "Chance of El Niño increases during the remainder of the year, exceeding 65% during summer"

By courtesy of Dr. Z.-Z. Hu

<u>Weblines from news sources that appeared</u> <u>on the Internet before mid-June 2014</u>

(Glantz 2015)

SST (color) & Surface wind anomalies (vector)

Question:

Why our models failed in predicting the 2014 El Nino development?

CICS Science Conference, Nov. 29-Dec.1, 2016, College Park, MD

Forecast Experiment (CTL)

• Forecast model: NCEP CFS version 2

Ocean initial state (OIC): ECMWF ORA-S4

Perturbed atmosphere-land ICs (4-member with each OIC, Apr. 1-4, CFSR)

Prediction skill of the Nino3.4

12-month hindcasts initialized in April 1982-2009

Predictions of 2014 El Nino

(20 ensemble members)

CICS Science Conference, Nov. 29-Dec.1, 2016, College Park, MD

Sensitivity Experiment: SE

• Artificially add the June SSTA in SE to the April OIC

SST (color) & Surface wind (vector) Diff. *relative to CTL*

Subsurface Temperature Diff. relative to CTL

^{2016,} College Park, MD

Prediction of the Nino3.4 index

0.78 (OBS) vs. 2.38 (CTL) vs. 1.75 (SE)

CICS Science Conference, Nov. 29-Dec.1, 2016, College Park, MD

Why the negative southeastern Pacific SSTA is missing?

Accumulated Anomalies during April-June 2014

CICS Science Conference, Nov. 29-Dec.1, 2016, College Park, MD

Answer:

Model deficits in representing the **thermodynamic WES** and **stratus-SST** feedbacks!

Summary

- The **cold SST anomalies in SE** is one of error sources for the 2014 El Nino prediction: *explaining 40% amplitude error at the peak phase*;
 - Another source: the lack of WWBs from May-June (Menkes et al. 2014) and an EWB during June (Hu and Fedorov 2016), both beyond the seasonal climate predictability.
- Climate model error analysis is essential to improve model performance and future predictions: *model deficiency in representing thermodynamic WES and stratus-SST feedbacks*.

Another Sensitivity Experiment: SE3

Nino-3.4 index

