Investigating the potential of the Community Collaborative Rain, Hail & Snow Network (CoCoRaHS) to serve as a reference to the NPreciSe NOAA satellite precipitation products validation system

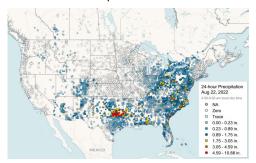
Lukas Ozpaker Malarvizhi Arulraj, PhD

Malarvizhi Arulraj, PhD Veljko Petković, PhD

Objective

Investigate the potential of CoCoRaHS dataset to be used as ground-reference data to evaluate satellite-based precipitation products.

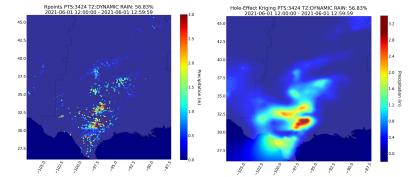
CoCoRaHS

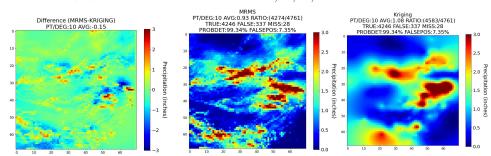

A community volunteer network of rain gauges with over 24,000 active observers across the United States and Canada started in 1998 by the Colorado Climate Center at Colorado State University.

Tech Stack

- Pvthon 3
- PyKrige
- GeoPandas
- Pandas, Numpy, Matplotlib
- TimezoneFinder
- PyTz

Python Scripts Flow


- Convert raw CoCoRaHS dataset reporting time into standard datetime format
- Convert polling station datetime from local timezone time to UTC using station longitude and latitude
- Perform additional quality control on CoCoRaHs dataset
- → Perform Ordinary Kriging or Universal Kriging on CoCoRaHS data over a specified area
- Plot and export MRMS data over a specified area
- Process exported Kriging and MRMS data to determine the probability of detection, along with other statistics and plots



Results

Our Ordinary Kriging method produces consistent models that track with MRMS data, generally slightly overestimating areas with rainfall.

- Average probability detection: ~99%
- Average false positive rate: ~7%

