Estimating Heatwave-attributed Mortalities using Machine Learning
David Guan

P

CISESS

Cooperative Institute for Satellite
Earth System Studies

Mentors: Jingjing Peng, Peng Yu

LST Anomaly 8 2024

Objectives Features
Design a machine learning pipeline to
predict monthly, provincial-level
heatwave mortalities in Spain

Evaluate feature importances

Weather

° Average daily max, min, mean temperature
No. days with max temp > 30, 35, 40 (°C)
No. days with heat index > 40 (°C)
No. 3-day streaks with max temp > 35 (°C)
Day and Night LST e ° o 2 ®

LST anomaly

Total precipitation
Average humidity

Methodology .

Human factors

80 features were extracted from e Population
weather and population data ®  Vulnerable population
° Built area fraction

e The provinces and months were one-hot
encoded into features

e Data covered years 2015-2024

e Training dataset made of 6000 data
points from 50 provinces * 120 months

e Trained and tested 35 different
regression models

Categorical (one hot encoded)
° Month

° Province
Log of Population
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Results Train and test performance
Using K-fold cross validation to test 35 different Troin Predictions vs Actual > Cross-Validated Predictions vs Actual
models, The Histogram-based Gradient Boosting N ) g
Regressor performed most accurately 00 | wo |

8
g

In order to reduce skew, a log transformation was
applied to the target variable before training, then
reversed after predictions
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Model hyperparameters were tuned to optimize ”‘o s 2 %0 w0 0 0‘0 : e o ™ - %
Actual Actual
Iea rni ng Actual Heat Attributed Deaths (August 2024) Predicted Heat Attributed Deaths (August 2024)
Example g
from a single 4 v 4
Performance Metrics month
MAE RMSE R2

Using 10-fold cross validation on Train | 129 | 6.37 0.888

Hist Gradient Boosting Regressor | Test | 216 | 10.65 | 0.688
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Predicted Heat Attributed Deaths.
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Future Directions Feature Importances

Expand model to other countries
Permutation importance was used to determine feature importances by randomly

Use feature importances to create a heatwave ) , i
shuffling each feature’s values and observing how much accuracy decreases

severity index
] F|nd finer tempo ral reSOIUtion data to prediCt Permutation Importances for Hist Gradient Boosting Regressor (Excluding Provinces)

on a weekly or even daily scale days tmax_gt 35

days_tmax_gt_30
spain_built_area_fraction_avg
wuln_pop_frac

pop_sum

mean_tmean
Ist_day_avg

Data sources sranm_2vg

mean_tmin
month_7
mean_hum

Data Frequency Source total_precip
days_heat_index_gt_40
Ist_night_avg

Provincial heat Daily Carlos Ill Health Institute’s Mortality Monitoring mean_tmax
wave mortality system days_tmax_gt_40
in Spain month_6

month_9

Weather Daily European Centre for Medium-Range Weather heat_streaks_gt_35 4
Forecasts month_10 +

LST and LST Monthly JPSS VIIRS Enterprise month_5

month_4 1
anomaly month_1

Population Gridded Population of the World (GPWv4.11) month_11

Built Area Gridded Population of the World (GPWv4.11) month_2 1
fraction month_3 1
month_12
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