Distinguishing Cloud and Haze by Satellite Imagery Using Fuzzy Clustering Method

Yizhou Fan*, Fuding Xie*, Zhanqing Li

Earth System Science Interdisciplinary Center, University of Maryland, College Park

*Visiting scholar

12/1/2016

About haze episode

What is haze

- Haze is pollution phenomenon caused by suspend fine particles
- Deterioration of visibility, influencing transportation
- PM2.5 particles harming human health

Haze in China

- Continued increasing in last 50 years
- Rapidly increasing in 21th century
- High attention paid by government environment division

2

Spring Summer Autumn Winter

Haze and cloud in satellite imagery

MODIS AQUA RGB image, Oct 20, 2015. Northeast Asia

Conventional cloud detection algorithms

- Infrared brightness temperature thresholds and difference tests $BT_{11} < 270K$ $BT_{8.6} - BT_{11} > -3.7 - 1.6\ln(PW)$ $BT_{11} - BT_{12} < -0.51 + 0.49\ln(PW)$
- Non-cloud obstruction flag and suspend dust flag

 $\begin{array}{l} BT_{11} - BT_{12} > -1K \\ BT_{3.75} < 350K \\ R_{2.1} > 0.20 \end{array}$

- Near infrared cirrus test $R_{1,38} > 0.035$
- Spatial variability tests (new for MODIS collection-6 aerosol products)

 $\begin{array}{l} \rho_{0.47} > 0.4 \\ \sigma_{0.47}^* > 0.0025 \text{ , } \sigma_{0.47} > 0.0075 \\ \rho_{1.38} > 0.025 \text{ , } \sigma_{1.38} > 0.003 \end{array}$

Band	Wavelength (nm)	Resolution (m)	Band	Wavelength (µm)	Resolution (m)
1	620 - 670	250	20	3.660 - 3.840	1000
2	841 - 876	250	21	3.929 - 3.989	1000
3	459 - 479	500	22	3.929 - 3.989	1000
4	545 - 565	500	23	4.020 - 4.080	1000
5	1230 - 1250	500	24	4.433 - 4.498	1000
6	1628 - 1652	500	25	4.482 - 4.549	1000
7	2105 - 2155	500	26	1.360 - 1.390	1000
8	405 - 420	1000	27	6.535-6.895	1000
9	438 - 448	1000	28	7.175 - 7.475	1000
10	483 - 493	1000	29	8,400 - 8,700	1000
11	526 - 536	1000	30		1000
12	546 - 556	1000	00	10.500 - 11.000	1000
13	662 - 672	1000	31	10. 780 - 11. 280	1000
14	673 - 683	1000	32	11.770 - 12.270	1000
15	743 - 753	1000	33	13.185 - 13.485	1000
16	862 - 877	1000	34	13.485 - 13.785	1000
17	890 - 920	1000	35	13.785 - 14.085	1000
18	931 - 941	1000	36	14.085 - 14.385	1000
19	915 - 965	1000			

Space & possibilities of optimization

- Thresholds need to be clear-cut and explicit, and need to be updated according to new observation findings.
- Does not lead to uniquely good result in different scenarios.
- Hardly uses information other than pixel reflection.
 - Ignores many important characteristics that help distinguishing cloud and haze.

- This leads our goal being
 - Decreasing the number of fix threshold tests.
 - Decreasing the use of unnecessary bands, while considering more features of cloud and haze.
 - Confirming good results in different local cloud-haze interacting scenes.

MYD35, AOD, 3km

Fuzzy clustering method

- **Machine learning** gives computers the ability to learn without being *explicitly* programmed.
- **Clustering** involves assigning data points to clusters, or homogeneous classes.

6.3

• In **fuzzy** flustering, each data point can belong to more than one cluster.

Fuzzy c-means clustering

0.5

0.5

- In **Centroid-based** clustering method, clusters are represented by a central vector.
- FCM is based on the minimization of objective function,

$$J_m = \sum_{i=1}^{D} \sum_{j=1}^{N} \mu_{ij}^m ||x_i - c_j||^2$$

- Possibility, or the extent to which each data point belongs to each cluster is measured by **membership matrix**. Its element μ_{ii} means the degree of membership of *i*th point in *j*th cluster.
- *m* controls the degree of **fuzzy overlap**, which refers how fuzzy the boundaries between clusters are.

Fuzzy c-means clustering

- FCM can be performed in following iterative way.
- 1. Randomly initialize the cluster membership values, μ_{ij} .
- 2. Calculate the cluster centers:

$$c_j = \frac{\sum_{i=1}^{D} \mu_{ij}^m x_i}{\sum_{i=1}^{D} \mu_{ij}^m}.$$

3. Update μ_{ij} according to the following:

$$\mu_{ij} = \frac{1}{\sum_{k=1}^{N} \left(\frac{||x_i - c_j||}{||x_i - c_k||}\right)^{\frac{2}{m-1}}}.$$

- 4. Calculate the objective function, J_m .
- 5. Repeat steps 2–4.

M = 1.1, Ave. Max. = 0.981 M = 2, Ave. Max. = 0.79 0.5 0.5 n 0.5 0.5 M = 4, Ave. Max. = 0.62 M = 3, Ave. Max. = 0.677 0.5 0.5 0.5 0.5

Characteristics of cloud and haze

- A cloud is...
 - White
 - Opaque in visual and infrared bands
 - In high altitude
 - Rich in spatial texture, spatially rough
 - Often moving quickly
- A haze is...
 - Grey, brown, yellow
 - Semi-transparent in visual bands, transparent in infrared bands.
 - In low altitude, limited to terrain features
 - Less in spatially texture, spatially smooth
 - Often moving slowly

Characteristics of cloud and haze

· ELECTINONIC : 7952 - ENGLAND

- Each point is clustered according to
 - Visual bands intensity (R, G, B).
 - Thermal infrared bands (860nm, 1240nm).
 - Spatial texture in bands above.
 - Terrain feature underneath.
 - Temporal image series.

$$J_m = \sum_{i=1}^{D} \sum_{j=1}^{N} \mu_{ij}^m ||x_i - c_j||^2$$

• If *p* features are used, each point is seen as a point in a *p*-dimensional space, such that

$$x_i = (R_{1i}, R_{2i}, \cdots R_{pi})$$

• Euclidean distance between 2 *p*-dimensional points is

$$||x_i - x_j|| = \sqrt{\sum_{k=1}^p (R_{ki} - R_{kj})^2}$$

Band 1, 620-670nm, R

Band 2, 841-876nm, IR

Band 3, 459-479nm, B

Band 4, 545-565nm, G

Cloud boundary & mask comparison

Histogram of cloud fuzzy partition ×10⁵

Cloud mask by Deep Blue

Cloud fuzzy partition

Cloud contour by Deep Blue

Cloud contour by FCM, threshold = 0.8

Cloud mask & surface data comparison

Cloud fuzzy partition Red dots = Surface stations with RH<80% and VIS<10km. Blue dots = other stations

Cloud mask & surface data comparison

35

Cloud mask & pm2.5 data comparison

AOD data synergy and haze region

Conclusion and future work

- Fuzzy clustering method can learn from characteristics of haze region, hence distinguish haze and cloud from satellite imagery.
- Distinguishing results are plausible comparing to station & satellite auxiliary data.
- Haze region can be retrieved, filling the blank area of the nullification of AOD retrieval algorithms.
- Introduce more features to classify cloud and haze.
- Develop a systematic quantitative method for result validation.

Thank you