TRAVEL AND MEETING REPORTS

CISESS Participation in the 104th American Meteorological Society Annual Meeting, 28 January to 1 February 2024, Baltimore, MD

Poster presentations

- Lei Ji, “Assessment of BRDF Effects in Surface Reflectance between GOES-16 and GOES-18”
- Yuling Liu, “Towards Routine Radiance-Based Validation of VIIRS LST Using GDAS Profiles”
Feng Zhang, “Evaluation of VIIRS Thermal Emissive Bands Long-Term Stability and Inter-sensor Consistency with Radiative Transfer Modeling”

Xiaoyang Zhang, F. Li, Y. Ye, and S. Kondragunta, “Global Biomass Burning Emissions Product for Operational Air Quality Forecasting”

Oral Presentations

Chris Brown, “Ecological Forecasting and Ecosystem Modeling: Challenges and Opportunities for the High-Performance Computing Community”

Patrick C. Campbell, “Development of Canopy-App for Atmospheric Composition Modeling Across Scales”
Example canopy-app output for canopy averaged variables driven by NOAA’s Global Forecast System on July 01, 2022, at 1200 UTC.

- Russ Dickerson, “University of Maryland and NOAA/ARL Collaboration over the Years: Learning how Weather, Climate, and Chemistry Conspire to Create Air Pollution” and “Environmental Justice in Baltimore, MD: Insight from BC Measurements from a Mobile Laboratory”

- Jun Dong, “NOAA Operational Satellite Snowfall Rate Product to Support Nowcasting”
NOAA/NESDIS developed the Operational Snowfall Rate (SFR) product with a latency of 2 to 3 hours. To support nowcasting, latency is crucial. By using satellite Direct Broadcast (DB) data, a DA DB-SFR product has been developed with a latency less than 30 or 20 minutes. A comparison of the SFR latency from the operational data stream (dashed lines) and the DB system (solid lines) is shown in the plot.

- Guangyang Fang, “Visualizing Real-Time Climate Data in Virtual Reality and Its Application in Climatology”
- Guangyang Fang and Damian Figueroa (intern, presenter), “Intuitive Supercell Visualization Using Virtual Reality”
- James Frech (presenter), Korak Saha, Paige Lavin, Huai-min Zhang, James Reagan, and Brandon Fung (intern), “Offshore Wind Profile Maps Developed using Machine Learning Techniques over the USA Coastal Region”
- Yunyao Li, “Global Ensemble Fire Emission Dataset and Subseasonal Wildfire Emission Forecast”
- Zaizhong Ma, “Simulation and Evaluation of Next Generation Microwave Satellite Observation for NWP Application”
- William Miller, “Investigating Spire GNSS RO Bending Angle Assimilation Impacts on HWRF Forecasts of Four 2022 Atlantic Hurricanes”
• Veljko Petkovic (invited talk), “Understanding the Uncertainty of Satellite Passive Microwave Precipitation Products”
• Thomas Smith, “Improving Daily Snow-Depth Analysis from Updated Spatial Statistics”
 This item was submitted in the SOCD Weekly Report.

• John Yang, Yong-Keun Lee, Shuyan Liu, Chris Grassotti, Kevin Garrett, Quanhua (Mark) Liu, and Coauthors, “Assessing TROPICS Pathfinder's Precipitation Retrieval Performance Through the NOAA Microwave Integrated Retrieval System (MiRS)”
Weekly Report – February 9, 2024
Cooperative Institute for Satellite Earth System Studies (CISESS)
NOAA/NESDIS/STAR

- Fangfang Yu, “Evaluation of GOES ABI Channel-to-Channel Registration Accuracy at Sub-Satellite Point”
- Yongsheng Zhang (presenter), James Frech, Xuepeng Zhao, and Huai-Min Zhang, “Impact of the Atlantic and West Pacific Warming on the Interdecadal Increase of Spring Aerosol Loadings in the North Indian Ocean since the early 21st Century”

The leading spatial patterns (left panels) and the principal component (PC) time series (middle) of Empirical Orthogonal Function (EOF) analyses on the NOAA-AVHRR observed aerosol in the northern Indian Ocean (NIO) for March-April-May (MAM) during 1983-2020. The differences of domain-averaged aerosol between the northern subtropical (55°E-100°E, 7°N-23°N) and the equatorial NIO (55°E-100°E, 10°S-6°N) (left).

• Jun Zhou, “Construction of Temperature Climate Data Records in Upper Troposphere and Lower Stratosphere (UTLS) Using Multiple RO Missions from 2006 to 2023 at NESDIS/STAR”

MEDIA INTERACTIONS AND REQUESTS

HIGHLIGHT FOR NESDIS LEADERSHIP
NOAA Coral Reef Watch’s new Bleaching Alert Levels featured by The Guardian: As reported on previously, on December 15, 2023, NOAA Coral Reef Watch (CRW) implemented a revised coral bleaching heat stress category system for its daily global 5km satellite coral Bleaching Alert Area product. Extreme accumulations of bleaching-level heat stress in 2023 necessitated the introduction of additional Bleaching Alert Levels. This development is a refinement of the original system that only used Bleaching Alert Levels 1 and 2. As shown below, the new Alert Levels 3-5 provide important, added detail, for when the magnitude of extreme heat stress exceeds the threshold of Alert Level 2 conditions.

On January 31, 2024, The Guardian featured CRW’s revised coral bleaching heat stress system in the article, “‘Literally off the charts’: global coral reef heat stress monitor forced to add new alerts as temperatures rise”. The NOAA CRW Federal Coordinator, Dr. Derek Manzello, as well as multiple, key partners in Australia, were interviewed for the article. Heat stress continues to build in the central Pacific Ocean, Indian Ocean, and along the Great Barrier Reef (GBR). All satellite Regional Virtual Stations for the GBR region are now at Bleaching Alert Level 1 (see below). The global coral reef community remains concerned that another global coral bleaching event is imminent. (POC: Jacqueline De La Cour, CISESS, jacqueline.shapo@noaa.gov, Funding: NOS).

<table>
<thead>
<tr>
<th>Stress Level</th>
<th>Definition</th>
<th>Potential Bleaching and Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Stress</td>
<td>HotSpot <= 0</td>
<td>No Bleaching</td>
</tr>
<tr>
<td>Bleach Watch</td>
<td>0 <= HotSpot < 1</td>
<td>Risk of Possible Bleaching</td>
</tr>
<tr>
<td>Bleaching Warning</td>
<td>1 <= HotSpot and 0 <= DHW < 4</td>
<td>Risk of Reef-Wide Bleaching</td>
</tr>
<tr>
<td>Bleaching Alert Level 1</td>
<td>1 <= HotSpot and 4 <= DHW < 8</td>
<td>Risk of Reef-Wide Bleaching with Mortality of Heat-Sensitive Corals</td>
</tr>
<tr>
<td>Bleaching Alert Level 2</td>
<td>1 <= HotSpot and 8 <= DHW < 12</td>
<td>Risk of Multi-Species Mortality</td>
</tr>
<tr>
<td>Bleaching Alert Level 3</td>
<td>1 <= HotSpot and 12 <= DHW < 16</td>
<td>Risk of Multi-Species Mortality (> 50% of corals)</td>
</tr>
<tr>
<td>Bleaching Alert Level 4</td>
<td>1 <= HotSpot and 16 <= DHW < 20</td>
<td>Risk of Near Complete Mortality (> 80% of corals)</td>
</tr>
<tr>
<td>Bleaching Alert Level 5</td>
<td>1 <= HotSpot and 20 <= DHW</td>
<td>Risk of Bleaching and Mortality of All Corals</td>
</tr>
</tbody>
</table>

NOAA Coral Reef Watch’s revised coral bleaching heat stress category system for its daily global 5km satellite coral Bleaching Alert Area product, introducing new Bleaching Alert Levels 3-5.
Weekly Report – February 9, 2024
Cooperative Institute for Satellite Earth System Studies (CISESS)
NOAA/NESDIS/STAR

9

(top image) NOAA Coral Reef Watch’s daily global 5km satellite coral Bleaching Alert Area product, of January 30, 2024, for the Great Barrier Reef (GBR), Australia. Heat stress continues to build along the GBR; all satellite Regional Virtual Stations for the GBR region are currently at Bleaching Alert Level 1 (bottom image).

This item was submitted in the SOCD Weekly Report.

Media coverage of NOAA Coral Reef Watch’s new Bleaching Alert Levels continues: Over the last week, press coverage continued surrounding NOAA Coral Reef Watch (CRW)’s implementation of a revised coral bleaching heat stress category system for its daily global 5km satellite coral Bleaching Alert Area product. Extreme accumulations of bleaching-level heat stress in 2023 necessitated CRW’s introduction of additional Bleaching Alert Levels 3–5; these provide important, added detail, for when ocean heat stress conditions are so extreme that they exceed
the original threshold of Bleaching Alert Level 2. The new Bleaching Alert Levels were featured most recently in articles by CBS News, Earth.org and multiple other media outlets in the US and abroad. Additionally, the CRW Federal Coordinator, Dr. Derek Manzello, was interviewed by The Weather Channel’s America’s Morning Headquarters and CBC Radio’s As It Happens programs about the new product refinements, conditions on reefs in Florida and the Caribbean this past summer, and the potential of a global coral bleaching event in 2024.

Also of note, CRW’s daily global 5km satellite Sea Surface Temperature (SST) Anomaly product was highlighted in a February 7, 2024 article in USA Today about the record heat stress in the world’s oceans and whether the impacts being witnessed are tied to climate change.

Multiple NOAA Coral Reef Watch products, including the newly-revised heat stress category system for the satellite coral Bleaching Alert Area product, were featured in a news article about Mission: Iconic Reef’s efforts to restore Florida’s Coral Reef in Science, February 7: https://www.science.org/content/article/after-mass-coral-die-off-florida-scientists-rethink-plan-to-save-ailing-reefs.

NOAA Climate.gov released a feature article on February 8 (https://www.climate.gov/news-features/featured-images/noaa-coral-reef-watch-extends-alert-scale-following-extreme-coral), about NOAA CRW’s monitoring of the extreme marine heat stress that led to mass bleaching of corals in the eastern Tropical Pacific, Florida, and Caribbean in 2023, as well as CRW’s newly-revised heat stress category system for our satellite Bleaching Alert Area product.

(POC: Jacqueline De La Cour, CISESS, jacqueline.shapo@noaa.gov, Funding: NOS).

This item was submitted in the SOCD Weekly Report.

(Maureen Cribb, CISESS, mcribb@umd.edu, Funding: Task I)