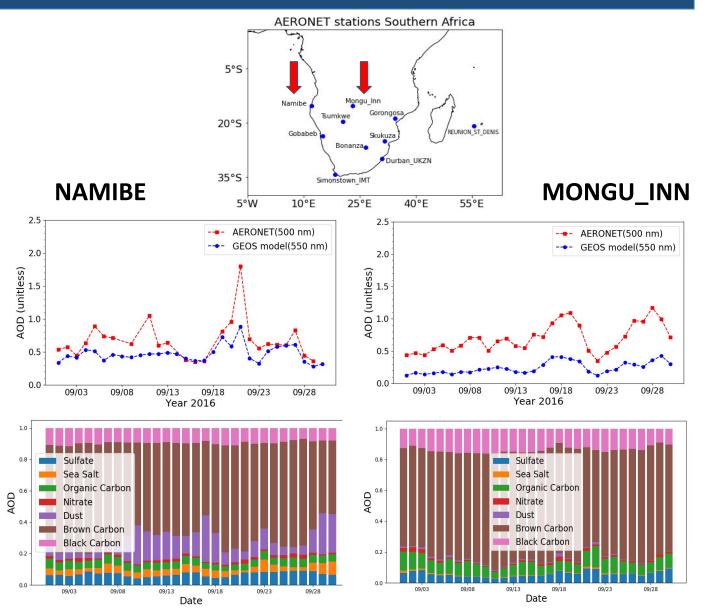


The variability of Aerosol Loading over the southern Africa biomass burning region

Divya Chappa¹, Sampa Das^{1,2}, Peter R. Colarco², Santiago Gassó^{1,2}, Huisheng Bian², and Omar Torres² ¹ESSIC, University of Maryland, MD, USA

²NASA/GSFC, Greenbelt, MD, USA

Introduction


- The southern African region produces about ¹/₃ of global biomass burning (BB) emissions. <u>https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/201</u> 6JD026421
- It is critical for global models such as GEOS to accurately predict the aerosol loading over this key area, which ultimately impacts the regional energy balance.

Methods & Approach

- AERONET: a network of ground-based sun photometers that measure atmospheric aerosol properties
- Goddard Earth Observing System (GEOS): Earth system model with online GOCART aerosol module that tracks size-resolved dust, sea salt, and nitrate, and bulk sulfate and carbonaceous aerosols, all as an external mixture.

Results & Discussion

- GEOS model closely matches variability of the AERONET data.
- Both sites are dominated by brown carbon, but Namibe has a significant dust contribution.

