

Aircraft Measurements of Air Pollutants and Greenhouse Gases in the Mid-Atlantic States <u>Xinrong Ren^{1,2,*}, Doyeon Ahn¹, Phil Stratton¹, Sarah Benish¹, Hao He¹, Ross Salawitch¹, and Russ Dickerson¹</u>

Motivation

- Mid-Atlantic states occasionally experience severe air smog in summer.
- Urban greenhouse gas (GHG) emissions contribute to the majority (~70%) of the anthropogenic GHG emissions.
- Quantification of urban greenhouse gas (GHG) emissions is important for establishing scientifically sound and cost-effective policies for mitigating GHGs.

Measurements

GPS Position (Lat, Long, Altitude)

- **Vet** (T, RH, P, wind speed/direction) race gases:
- O₃: UV Absorption, modified TECO SO₂: Pulsed Fluorescence, modified TECO $CH_4/CO_2/CO/H_2O$: Cavity Ringdown, Picarro NO₂: Cavity Ring Down, Los Gatos NO: Chemiluminescence, modified TECO **VOCs: grab canisters/GC-FID**

Aerosol Optical Properties:

Scattering: b_{scat} (@450, 550, 700 nm), Nephelometer

Absorption: b_{ap} (565 nm), PSAP **Black Carbon: Aethalometer**

A Typical Air Quality & Mass Balance Flight Afternoon Flight (~2:30-5:30 PM) on 7/2/2018

• Ozone and CH₄ plume downwind of NYC.

Time series of Alt, Ozone, CO₂, CH₄, and CO

¹University of Maryland College Park; ²NOAA Air Resources Lab; *Contact: Xinrong.ren@noaa.gov

