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1. Background 6. Baseline Performance of MIRS GPM/GMI

MIiRS (Microwave Integrated Retrieval System) is a One-Dimensional Variational inversion scheme (1DVAR) (Boukabara et al. 2013) The primary change in v11.2 is the extension of MiRS to GPM/GMI measurements. Validation activities are continuing with the goal to
that employs the Community Radiative Transfer Model (CRTM) as the forward and adjoint operators. It simultaneously solves for determine performance in different seasons.

surface (Tskin, emissivity), and atmospheric parameters (temperature, water vapor, non-precipitating cloud and hydrometeor

profiles). MiRS is currently being run operationally at NOAA for Suomi-NPP/ATMS, POES N18/N19, Metop-A, Metop-B, DMSP-F17/F18, Land July 2015 Ocean it e o
and Megha-Tropiques/SAPHIR. In August 2016, an updated version (v11.2) was delivered to NOAA operations, extending processing on e B R S | [y s AR ) | [ St o [ B =t —en e
capability to GPM/GMI measurements. The 1DVAR algorithm uses an iterative approach in which a solution is sought that best fits the N - | N — | 1 | N D g s i
observed satellite radiances, subject to other constraints. A post-processing step is then performed to determine a number of T ™ e R, [ E]5 7] -
additional derived parameters, including surface precipitation rate (Iturbide-Sanchez et al. 2011). The precipitation rate determination — — — — S PR S D
IS sensor-independent in that the same relationships (determined off-line using numerical weather prediction model simulations) © | comr:0.49 © .| corr:053 [[|F ] corr:038 © | corr:0.41
between the surface precipitation rate and the vertical hydrometeor profiles are used throughout. Lsabvense | [MIRS |1} | caovoes || GPROF | 1) [odbuie | MRS ||| [Gdhae || GPROF ) P S —
In this poster, we report on assessment and validation of the MIRS precipitation rate product, including comparisons with ground- — — — —

based measurements such as the Stage IV and MRMS Q3 radar-gauge products, focusing primarily on results from Suomi-NPP/ATMS, Figure 7. Categorical scores of MiRS and GPROF (v04)

Figure 6. Performance of MiRS and GPROF (v04) GMI relative to Stage IV during

and GPM/GMI. Additional discussion will focus on potential avenues for improvement based on results from validation and sensitivity {111}y SO, (MRS OTEr i C0 (o1 (RS e GEer Gl E1is (s GHEaier (e ©

testing.

GMI relative to Stage 1V during July 2015.

MIRS appears to have lower detection of rainfall over land than

GPROF, but generally higher over ocean. Slightly higher false
alarms reduce the MIRS Heidke Scores. The issue of light rain

2 ° M i RS 1 Dva r Algo rit h m detection over land is treated in the following section below.

The 1DVAR algorithm uses an iterative approach in which a solution is sought which “best fits” the observed satellite radiances,

subject to other constraints. To reach the iterative solution, the algorithm seeks to minimize the cost function 7. Eva I uation Of CLW/Light Rain DEtECtion Over La nd
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where AX is the updated state vector at iteration n+1, and K is the matrix of Jacobians which contain the sensitivity of the radiances . MIRS/GPROF more  variable  land  surface
to changes in X (parameters to retrieve). This is then followed by the post-processing step which uses as inputs the elements of the so o e || S ome oo e s s | StageIV s emissivity) in the CLW estimates over
- : : : e | Om O . — | land.
state vector X. Figure 1 summarizes the MIRS processing components. co eo w00 | Wb com  wmed 05 20 s so  s0 0o

Figure 8. Example of impact of using retrieved CLW over land in the
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Post-processing to determine a surface precipitation rate is done by first vertically integrating each of the cloud (small droplets of 30 0 E sl :

- S - 5 5 5 - 0.2 = . = . 1
microns), as well as the precipitation-related profiles of rain water and graupel water (500 microns) to obtain CLW, RWP, and GWHP, 1T e T 1T j . |
respectively. The rain rate is then computed from the following equations: . et & StDvi126 | e 1 3 siov: 118 !

T P T ope: 0. ] T ope: 0. i
RR(CLW, RWP, GWP) = I S e e Ll | o 21009 | o Tm=sim T e |
(CLW,RWP, GWP) = RRcvw +3.879 * (RWP + GWP) Sr— B R R——
Ln [ MIRS NPP HR Rain Rate {mm/h) } Ln [ MIRS NPP HR Rain Rate {mm/h) }
1' 156 - - - - - - Density of Points Density of Points
where RRcw =2.339*(CLW) Figure 9. Normalized errors relative to Stage 1V in retrieved rain rate (left) -_— — -_—— ——

and categorical scores (right) for MiRS ATMS retrievals during the period 1-

The relationship between RR and CLW, RWP, and GWP is based on off-line simulations of the MM5 mesoscale model for a number of 22 Sept 2016 over the CONUS and coastal ocean.

Figure 10. Histograms and scatterplots of MIRS ATMS vs. Stage IV

cases. The same equation is applied for all operational satellites, and over all surface types, with the exception that over land the CLW- operational and experimental rain rate over land during 1-22 Sept
based term is set to zero, since it had been previously determined that CLW microwave signal over land was low relative to variations Incorporation of CLW has (1) reduced the normalized bias for land rain rates below 3 = 2016. Note ImIOFO\I/ed_frequencyddlﬁtrllbutlop and agreement Wl!:hhStage
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17 1 el laaulidaud normally, accounting for climatological covariances between temperature and other
18 i parameters such as water vapor and hydrometeors. The unrealistic low level warm
° ° ° ° ' ; ; ; ' : ' ' ' : ' ' anomaly is partly an artifact of the rain signal in the measured radiances. In
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4. MiRS Global Precipitation from ATMS and GMI - Cxperimental retrieval (Exp, top right) the temperature was assumed uncorrelated
oC fail 0.0 +0 B.O 12.0 16.0 20.0 with all other retrieved parameters. This decorrelation results in a temperature
GPM/GMI Rain Rate ‘SNPP/ATMS Rain Rate anomaly structure closer to the expected one (see example at left), with the
warmest anomalies concentrated near the tropopause, and decreasing at lower
MIRS GPM/GMI Rain Rate { mm/hr ) 2016-06-21 Asc  (VI634) MIRS NPP/ATMS Rain Rate ( mm/hr ) 2016-08-21 Asc  (¥3475) levels. The improvement is consistent with the fact that the atmospheric structure of
* A S e e D ! * A S S s v D b tropical cyclones is fundamentally different than that for global average conditions.
60 _ _ _ Figure 13. MIRS retrievals of rain rate and temperature structure for Typhoon Meranti on 13 September 2016. Top Left: MiRS rain rate (mm/h) with
o) Figure 3. Comparison of global rain rate Az o location of cross-section indicated. Top center: Operational (Control) retrieval of temperature anomaly cross-section. Top right: Experimental (Exp)
0 21 June 2016 from MIRS when applied to version of temperature anomaly cross-section. Bottom center: Typical temperature anomaly cross-section.
GPM/GMI (left) and SNPP/ATMS measurements
e (right). Examples of weather systems detected by
o both satellites are circled.
9. Summary
A new version of the NOAA MIRS algorithm (V11.2) has recently been released and will be transitioned to operations at
e N I e e e T T e e e ) NOAA. Work is ongoing to assess, validate and improve the precipitation products from MiRS.
] e I — ] i I —
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* MIRS has now been extended to routinely process data from GPM/GMI making a total of 9 satellites processed by the MIRS algorithm

operationally by NOAA.

« Rainfall retrievals over ocean show satisfactory performance in terms of error statistics (bias, standard deviation, correlation), as

5. SNPP/ATMS Baseline Comparisons with Stage IV and GPROF | | wel as contingency-based metrics.

» Detection and estimation of light precipitation (< 3 mm/h) over land has been improved by the incorporation of non-scattering cloud

P d t U .t B' StD N t 1s0.00F All Recorlds Llancl1 }-j\'slm‘ag‘r?m 20‘\67‘04—DI1 (\/"3475? N 1000 All Records Ccean H\‘strogl;am Z016-04-01 (V3475) - . . . .
oo " (accuracy) (Precision] P =0 —mr ] water in the rainfall rate relationships.
— — el tand | ||| il Ocean | | * Experiments are ongoing to improve the retrieved temperature structure in and around tropical cyclones, for example, by modifying
: - : - i e § the assumed intercorrelations between temperature, water vapor, and hydrometeors, accounting for tropical cyclone climatologies.
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: * Extension of MiRS operational capability to to upcoming JPSS-1/ATMS mission data by 2017.
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estimates for the period August 2015-March 2016. For each : | : |
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comparison, the JPSS performance requirement is also shown. : ™1 an e Access to MIRS data an_d software: (1) MIRS website at mlrs.ne_sdls.noaa.g_ov, (2) NOAA CLASS archive at
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