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In operational retrieval (Control, top center) the temperature profile was retrieved 
normally, accounting for climatological covariances between temperature and other 
parameters such as water vapor and hydrometeors. The unrealistic low level warm 
anomaly is partly an artifact of the rain signal in the measured radiances. In 
experimental retrieval (Exp, top right) the temperature was assumed uncorrelated 
with all other retrieved parameters. This decorrelation results in a temperature 
anomaly structure closer to the expected one (see example at left), with the 
warmest anomalies concentrated near the tropopause, and decreasing at lower 
levels. The improvement is consistent with the fact that the atmospheric structure of 
tropical cyclones is fundamentally different than that for global average conditions. 

Figure 13. MiRS retrievals of rain rate and temperature structure for Typhoon Meranti on 13 September 2016. Top Left: MiRS rain rate (mm/h) with 
location of cross-section indicated. Top center: Operational (Control) retrieval of temperature anomaly cross-section. Top right: Experimental (Exp) 
version of temperature anomaly cross-section. Bottom center: Typical temperature anomaly cross-section.   
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MiRS (Microwave Integrated Retrieval System) is a One-Dimensional Variational inversion scheme (1DVAR) (Boukabara et al. 2013) 
that employs the Community Radiative Transfer Model (CRTM) as the forward and adjoint operators. It simultaneously solves for 
surface (Tskin, emissivity), and atmospheric parameters (temperature, water vapor, non-precipitating cloud and hydrometeor 
profiles). MiRS is currently being run operationally at NOAA for Suomi-NPP/ATMS, POES N18/N19, Metop-A, Metop-B, DMSP-F17/F18, 
and Megha-Tropiques/SAPHIR. In August 2016, an updated version (v11.2) was delivered to NOAA operations, extending processing 
capability to GPM/GMI measurements. The 1DVAR algorithm uses an iterative approach in which a solution is sought that best fits the 
observed satellite radiances, subject to other constraints. A post-processing step is then performed to determine a number of 
additional derived parameters, including surface precipitation rate (Iturbide-Sanchez et al. 2011). The precipitation rate determination 
is sensor-independent in that the same relationships (determined off-line using numerical weather prediction model simulations) 
between the surface precipitation rate and the vertical hydrometeor profiles are used throughout. 
In this poster, we report on assessment and validation of the MiRS precipitation rate product, including comparisons with ground-
based measurements such as the Stage IV and MRMS Q3 radar-gauge products, focusing primarily on results from Suomi-NPP/ATMS, 
and GPM/GMI. Additional discussion will focus on potential avenues for improvement based on results from validation and sensitivity 
testing. 

The 1DVAR algorithm uses an iterative approach in which a solution is sought which “best fits” the observed satellite radiances, 
subject to other constraints. To reach the iterative solution, the algorithm seeks to minimize the cost function 
 
 
 
where X in the 1st term on the right is the retrieved state vector, and the term itself represents the penalty for departing from the 
background X0, weighted by the error covariance matrix B. The 2nd term represents the penalty for the simulated radiances Y 
departing from the observed radiances Ym, weighted by instrument and modeling errors E. This leads to the iterative solution 
 
                                             
 
where ∆X is the updated state vector at iteration n+1, and K is the matrix of Jacobians which contain the sensitivity of the radiances 
to changes in X (parameters to retrieve).  This is then followed by the post-processing step which uses as inputs the elements of the 
state vector X. Figure 1 summarizes the MiRS processing components. 
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Figure 1. MiRS core retrieval and post-processing (VIPP) components. Core products are retrieved 
simultaneously as part of the state vector.   VIPP products are derived through vertical integration 
(hydrometeors), catalogs (SIC, SWE), or fast regressions (Rain Rate). Hydrometeor retrieval products 
are indicated in yellow: Rain Rate, Graupel Water Path, Rain Water Path and Cloud Liquid Water. 
 

Post-processing to determine a surface precipitation rate is done by first vertically integrating each of the cloud (small droplets of 30 
microns), as well as the precipitation-related profiles of rain water and graupel water (500 microns) to obtain CLW, RWP, and GWP, 
respectively. The rain rate is then computed from the following equations: 

GWP)(RWP879.3RRGWP)RWP,RR(CLW, 1.103
CLW +∗+=

(CLW)2.339RR 1.156
CLW ∗=where 

The relationship between RR and CLW, RWP, and GWP is based on off-line simulations of the MM5 mesoscale model for a number of 
cases. The same equation is applied for all operational satellites, and over all surface types, with the exception that over land the CLW-
based term is set to zero, since it had been previously determined that CLW microwave signal over land was low relative to variations 
in background surface emissivity. However, recent testing indicates that use of CLW may improve light rain detection and estimation 
over land. (see Section TBD) 

All versions of MiRS starting with v11.0 utilize Version 2.1.1 of CRTM. The key element of CRTM that allows for the rapid retrieval of 
not only the temperature and water vapor profile, but also the liquid and frozen hydrometeor profiles is the simultaneous computation 
of both forward simulated radiances, and their corresponding Jacobians (sensitivity of radiances with respect to retrieval state vector). 
The scattering calculation in this version of CRTM assumes spherical particles (Mie approximation). Upcoming versions of CRTM will 
incorporate non-spherical particles. 

Figure 2. Example of rain water (top) and graupel water (bottom) retrieval evolution for a single profile based on NOAA-18 AMSU-MHS 
measurements.  Left panels show rain and graupel water profile retrieval as function of iteration (3 iterations total). The remaining panels show the 
CRTM Jacobians with respect to rain and graupel at channels 15, 17, 18, 19, 20 (89, 157, 183±1, 183±3, and 190 GHz), for each iteration. In this 
case, the retrieval converged in 3 iterations. Rain and graupel particle effective radii were assumed to be 500 microns. 
 

Evolution of retrieved rain 
and graupel water and 
associated Jacobians show 
(1) non-linear behavior in 
that Jacobian profile 
changes with hydrometeor 
amount, and (2) final 
retrieved profile can have 
different shape than a 
priori background/first 
guess. 

Rain 
Water 

Graupel 
Water 

Jacobians, Iter=1 Jacobians, Iter=2 Jacobians, Iter=3 

4. MiRS Global Precipitation from ATMS and GMI 

Figure 3. Comparison of global rain rate maps on 
21 June 2016 from MIRS when applied to 
GPM/GMI (left) and SNPP/ATMS measurements 
(right). Examples of weather systems detected by 
both satellites are circled. 
 
 
 
 

GPM/GMI Rain Rate SNPP/ATMS Rain Rate 

5. SNPP/ATMS Baseline Comparisons with Stage IV and GPROF 
Product Units Bias 

(Accuracy) 
StDv 

(Precision) 
Npts 

MiRS Req MiRS Req 

Rain Rate (land, Stage IV)  mm/h 0.01 0.05 0.8 1.5 8.7E+06 

Rain Rate (ocean, Stage IV) mm/h 0.08 0.10 1.0 1.0 1.8E+06 

Rain Rate (land, GPROF)  mm/h -0.01 0.05 0.4 1.5 8.1E+04 

Rain Rate (ocean, GPROF) mm/h -0.01 0.10 0.8 1.0 1.8E+05 

Table 1. Collocation statistics for MiRS SNPP/ATMS rain rate 
with Stage IV radar-gauge (CONUS) and GPROF-GMI (global) 
estimates for the period August 2015-March 2016. For each 
comparison, the JPSS performance requirement is also shown. 
 
 
 
 

CLW: MiRS and GPROF Ocean 
Corr: 0.652 
Bias:  -0.004 
StDv: 0.06 
Npts: 157748 
 

Figure 4. Scatterplot of 
MiRS SNPP/ATMS CLW 
(mm) retrievals over ocean 
vs. GPROF-GMI for the 
period August 2015-March 
2016. 
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Figure 5. Histograms of MiRS SNPP/ATMS compared with Stage IV rain rate (top) 
and GPROF-GMI rain rate (bottom) over land and ocean for the period March 
2015- May 2016. For Stage IV, the ocean data correspond to points located within 
approximately 100 km of the coastline. Histograms correspond to points where 
both MiRS and reference (Stage IV or GPROF) were greater than or equal to zero. 
 
 
 

The primary change in v11.2 is the extension of MiRS to GPM/GMI measurements. Validation activities are continuing with the goal to 
determine performance in different seasons. 

Land Ocean July 2015 

MiRS 
Stage IV  

GPROF MIRS GPROF MIRS 

Figure 6. Performance of MiRS and GPROF (v04) GMI relative to Stage IV during 
July 2015. Histograms are for points when either estimate was greater than 0. 
 
 
 
 

MiRS appears to have lower detection of rainfall over land than 
GPROF, but generally higher over ocean. Slightly higher false 
alarms reduce the MiRS Heidke Scores. The issue of light rain 
detection over land is treated in the following section below. 

Figure 7. Categorical scores of MiRS and GPROF (v04) 
GMI relative to Stage IV during July 2015.  
 
 
 

Figure 8. Example of impact of using retrieved CLW over land in the 
land precipitation estimation from SNPP/ATMS on 01 May 2016. Shown 
are (a) MiRS operational RR (mm/h), (b) MiRS RR using CLW, (c) MRMS 
Q3 radar-gauge analysis valid at 1900 UTC (units in inches), (d) MiRS 
Liquid Water Path (LWP=RWP+CLW, mm), and (e) visible satellite image 
from GOES-East valid at 1915 UTC. 
 
 
 

The incorporation of CLW (non-
scattering cloud droplets of 30 
micron effective radius) into the 
SNPP/ATMS rain rate estimate clearly 
improves the detection and 
estimation of light rainfall over land 
in this case. The signal of light rain in 
the CLW retrievals is generally large 
enough to overcome the increased 
uncertainty (partly due to higher and 
more variable land surface 
emissivity) in the CLW estimates over 
land.  
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A new version of the NOAA MiRS algorithm (V11.2) has recently  been released and will be transitioned to operations at 
NOAA. Work is ongoing to assess, validate and improve the precipitation products from MiRS. 
 
• MiRS has now been extended to routinely process data from GPM/GMI making a total of 9 satellites processed by the MiRS algorithm 
operationally by NOAA.  
• Rainfall retrievals over ocean show satisfactory performance in terms of error statistics (bias, standard deviation, correlation), as 
well as contingency-based metrics. 
• Detection and estimation of light precipitation (< 3 mm/h) over land has been improved by the incorporation of non-scattering cloud 
water in the rainfall rate relationships. 
• Experiments are ongoing to improve the retrieved temperature structure in and around tropical cyclones, for example, by modifying 
the assumed intercorrelations between temperature, water vapor, and hydrometeors, accounting for tropical cyclone climatologies.  
 
 
Future Work:   
• Leverage planned improvements to CRTM, e.g. non-spherical particle scattering. 
• Incorporation of hydrometeor effective radius as variable in state vector (currently fixed at 500 microns). 
• Development of a priori constraints to improve T and WV retrievals in rainy conditions. 
• Extension of MiRS operational capability to to upcoming JPSS-1/ATMS mission data by 2017. 
 
Access to MiRS data and software: (1) MiRS website at mirs.nesdis.noaa.gov, (2) NOAA CLASS archive at 
www.class.noaa.gov, (3) Direct Broadcast Package: CSPP_MIRS_2.0 at cimss.ssec.wisc.edu/cspp 
 
 

Figure 9. Normalized errors relative to Stage IV in retrieved rain rate (left) 
and categorical scores (right) for MiRS ATMS retrievals during the period 1-
22 Sept 2016 over the CONUS and coastal ocean.  
 
 
 
Incorporation of CLW has (1) reduced the normalized bias for land rain rates below 3 
mm/h, and the RMSD for rates below 5 mm/h, (2) improved the POD and Heidke 
Score for most rain rate thresholds. 

Figure 10. Histograms and scatterplots of MIRS ATMS vs. Stage IV 
operational and experimental rain rate over land during 1-22 Sept 
2016. Note improved frequency distribution and agreement with Stage 
IV in experimental rain rate, and the large increase in points with RR > 
0. Histograms are for all points with Stage IV greater than 0. 
 
 
 

Operational 
Rain Rate 

Experimental 
Rain Rate 

Mean RR (MiRS): 1.30 
Mean RR (St IV): 1.71 
StDv (MiRS) : 2.31 
StDv (St IV): 3.13 

Mean RR (MiRS): 1.54 
Mean RR (St IV): 1.71 
StDv (MiRS) : 2.95 
StDv (St IV): 3.13 

Corr: 0.429 
Bias: 0.47 
StDv : 1.26 
Slope: 0.63 
Npts:  21899 

Corr: 0.482 
Bias: 0.45 
StDv : 1.18 
Slope: 0.81 
Npts: 32612 

Npts: 3.8E+6 
Corr : 0.53 
Bias :   0.03 
StdDv   0.94 
 
 

Npts:  3.6E+6 
Corr: 0.49 
Bias:   0.04 
StdDv:  1.12 
 
 

Npts: 8.9E+5 
Corr : 0.41 
Bias :   0.06 
StdDv : 1.07 

Npts:  7.5E+5 
Corr : 0.38 
Bias :   0.18 
StdDv :  1.62 
 
 

Figure 11. Categorical scores for MIRS 
GMI operational and test rain rates over 
land for March and July 2015.  
 
 

Mean RR (MiRS): 0.50 
Mean RR (St IV): 0.85 
StDv (MiRS) : 1.34 
StDv (St IV): 1.37 

Mean RR (MiRS): 0.68 
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Figure 12. Histograms for MIRS GMI operational and 
experimental rain rates over land for March and July 2015.  
 
 
 

July 2015 

March 2015 

MiRS/GPROF 
Stage IV  

Mean RR (MiRS): 1.46 
Mean RR (St IV): 1.45 
StDv (MiRS) : 3.97 
StDv (St IV): 2.88 

Mean RR (MiRS): 1.53 
Mean RR (St IV): 1.45 
StDv (MiRS) : 3.98 
StDv (St IV): 2.88 

Improvement in light rain detection when CLW 
is used is greater in March, which typically has 
a greater percentage of stratiform rain events. 
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