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Science Problem 
Weather fronts are important to studies of weather 
and climate because of the variety of significant 
weather events associated directly with them, 
including severe thunderstorms and a wide 
spectrum of precipitation types and amounts. In a 
recent study, fronts were found to be the direct 
cause of more than half of observed extreme 
precipitation events in the contiguous U.S. (Kunkel 
et al. 2012). They have complex spatial patterns, 
often represented by complex curved lines. 
 
Fronts are identified visually based on the 
approximate spatial coincidence of a number of 
quasi-linear localized features - a trough in air 
pressure in combination with gradients in air 
temperature and/or humidity and a shift in wind 
direction. (Stull 2015) Fronts are categorized as cold, 
warm, stationary, or occluded, with each type 
exhibiting somewhat different characteristics. 
 
The locations of weather fronts are currently 
determined by meteorologists performing visual 
analysis, and there is no long historical record of the 
results of those analyses available in a form that can 
be used for climatological studies. An automated 
method for determining front locations is needed in 
order to study fronts over climatological time scales. 

Analytics Problem 
A supervised 2-dimensional Convolutional Neural 
Network (2D CNN) was implemented to investigate 
whether it could imitate the visual fronts 
recognition task. The goal for our front classification 
CNN is to estimate the likelihood that a given pixel 
in an image composed of grids of weather data lies 
within a front. 
 
The CNN architecture is trained by optimizing the 
values of the pixels in the convolution filters to 
minimize the difference between the truth dataset 
and the output of the network applied to the input 
dataset as measured using a cost, or loss, function. 
We used the categorical cross-entropy loss function, 
which has the form 
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where p is a set of output pixels, t is a set of truth 
pixels, w is a per-category weight, I is the number of 
pixels, and C is the number of categories. There are 
five possible categories including four for different 
types of fronts and a fifth for the absence of a front 
(or ``no-front''). Each truth pixel is assigned one and 
only one category. The lower the likelihood value for 
the corresponding output category, the larger the 
contribution to the loss. The per-category weights 
are used to adjust the relative significance of the 
contributions from the different categories. 

Processing 
The network was implemented in Keras, Theano, 
and Scikit-learn and trained with the data for 2003-
2007 using an 80%-20% training-test split and 3-fold 
cross-validation. We tested the training results by 
calculating the confusion matrix and per-category 
Intersection-over-Union (IoU) (ratio of correctly 
categorized pixels to total pixels in that category in 
either truth or CNN data, computed over each 
category) for the entire set of images. 
 
The results were further processed to extract 
polylines describing the fronts in each time step by 
tracing out the lines following the maxima for each 
type of front. These were used to calculate the 
annual average number of front crossings at each 96 
km x 96 km grid cell in a Lambert Conformal Conic 
map covering North America. We then compared 
the results with the annual average number of front 
crossings found using the original polylines from the 
CSB. 
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Datasets 
The input dataset consisted of gridded fields of five 
surface variables taken from the Modern-Era 
Retrospective analysis for Research and 
Applications, Version 2 (MERRA-2). The variables 
were 3-hourly instantaneous values of 2m air 
temperature, 2m specific humidity, sea level 
pressure, and the 10m wind velocity. 
 
Our truth dataset was extracted from the Coded 
Surface Bulletin (CSB). Each text bulletin contains 
latitudes and longitudes specifying the locations of 
pressure centers, fronts, and troughs identified 
visually. Each front and trough is represented by a 
polyline. We obtained all the bulletins possible for 
2003-2016 and produced an image for each time 
step by drawing the front lines into latitude / 
longitude grids with one degree cell size. Each front 
was drawn with a transverse extent of three degrees 
to account for the fact that a front is not a zero-
width line, and to add tolerances for slight lateral 
differences in position between the CSB and any 
MERRA-2 front signatures. The quantitative 
evaluation was restricted to regions where the 
frequency of fronts was at least 40 per year. 

Conclusion 
The current front detection CNN is correctly 
reproducing the overall spatial distribution and 
frequency of fronts. It consistently under-detects 
fronts by ~20% according to climatology. The 
confusion is greatest for warm fronts, followed by 
occluded fronts. Improvement is likely as the CNN 
architecture is refined, including adding sensitivity to 
the time dimension. 

Truth\Pred warm occluded cold stationary 

warm 0.44 0.13 0.14 0.29 

occluded 0.05 0.75 0.14 0.06 

cold 0.01 0.03 0.79 0.17 

stationary 0.04 0.03 0.15 0.79 

Confusion as Fraction of Truth 
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