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Motivation: Why Data Assimilation? 
 

• Situational Awareness 
• Initial conditions for Numerical Models 
• Calibration and validation 
• Observing system design, monitoring and 

assessment  
• Reanalysis  
• Better understanding (Model errors, Data 

errors, Physical process interactions, etc.)  
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xb yo 

Data assimilation systems usually combine together information 
from a short term forecast, a set of observations and possibly other 
information to estimate the most probable state of atmosphere. 

Introduction 

Courtesy: Ménétrier 



Evolution of Data Assimilation 
 
• Semi-empirical DA methods 

• Successive Correction Method (SCM: Cressman 1959) 
• Each observation is given a radius of influence with its weight  

varying with the distance to the model grid point 
• Relaxation functions are somewhat arbitrary 
• Noisy observations can create unphysical analysis 

 

• Modern Data Assimilation (DA) = Kalman Filter algorithm 
 

• Notations 
• Observation operator  H: xy  

       (from model state to observation state) 

• Departure: d = yo-Hxb 
 



• 1990’s: Variational DA and Assimilation of radiances 
• 2000’s: 4-dimensional DA algorithm (4DVar)  
• 2010’s: Variational Bias Correction and Ensemble Covariances 
 

Source: ECMWF Model: Hxb Observation: yo 

Major Milestones (over-)simplified 



Source: ECMWF 

• Skill improvement ~ 1d/decade 
• Estimated socio-economic benefit of NWP >$75B/y  

Source: Riishojgaard 



Current Status of Satellite DA 



 
 
 
 

 
 

 
• Kalman Filter analysis:   
   xa = xb + Kd  A = (I-KH)B 
  

• Model forecast:   
   xb  M(xa)  B   MAMT + Q 

 
 

Hypotheses: Background and observation errors are 
uncorrelated, unbiased, normally distributed, with 
known covariances B and R 

Modern DA on a Paper Napkin 

K  = BHT(HBHT+R)-1 



• The B matrix spreads information between variables and 
imposes balance. Since it is the last operator in the analysis 
equation, the analysis increments lies in its subspace.   
 

• We don’t know the true state  cannot produce error samples 
 

• We can infer proxies of background errors 
– from departures  
– from time-lagged forecasts 
– from ensemble perturbations 

 
• Two “schools” to represent the B matrix: 

• Variational algorithms (3DVar, 4DVar, etc) 
• Ensemble Kalman Filter algorithms (EnKF, ETKF, etc) 
 

 
 
 

Background Error Covariance Modeling 



Wang, Sun, Zhang, Huang and Auligné (MWR 2013) Mini-4DVar (10min) 



Observation Error Covariances 

AIRS Diagnostic R Matrix 

Source: Weston (2011) 

Correlated errors  
(esp. for moisture channels) 
 
At least partly due to 
representativeness error 
(Waller et al. 2014)  



Current State of the Art 

• Good estimates of the observational AND forecast error 
structure are necessary.  Much of our effort is directed 
towards improving the specification of these error structures. 
 

• In addition, determining the set of observations to use in an 
analysis is very important. 
– Quality control 
– Observation Operator (incl. CRTM) 
– Bias Correction 

 
• Also, assimilation system must be efficient enough to 

complete in operational time window (~20 minutes for 
current global system). 
– Approximations necessary. 

 



Application of NWP  
Bias Correction for SSMIS F18 
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Using Met Office SSMIS  
Bias Correction Predictors 

T (K) 

T (K) 

T
 (K

) 

Courtesy: Andrew Collard 



from Langland 2009 

Forecast Sensitivity to Observation Impact 



500 hPa Anomaly Correlations 
15 Aug – 30 Sep 2010 

No Satellite / No Conventional  Data 

Northern Hemisphere Southern Hemisphere 

Satellite Data Crucial in NWP 

Source: Jung (2012) 



Looking into the future 



Multiple Converging Applications with DA 
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3 km global MPAS simulation 

Cold-pools from  
isolated storms  
ahead of the  
cold front 

splitting  
supercell 
thunderstorms 

Source: Bill Skamarock 



Smaller spatial and temporal scales 
• More timely use of satellite data (short cut-off)  fight data latency 
• Quick turnaround (4DVar penalized)  calculations off critical path 
• Process data (tanking, QC, 1DVar, etc) on the fly 
• Uncertainties and predictability (probabilistic forecasts) 

 
 
Cycling requirements 
• Wait for valuable observations 
• Hurry to get skillful forecast 
• Rapid Update Cycling (hourly or sub-hourly)  Continuous DA 
 

 

Data Fusion & Convective Scale DA 



From NWP to Earth System Modeling 



 
Coupled Model 
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NCEP Coupled Hybrid Data Assimilation and Forecast System 

Courtesy: Suru 

Data 
Assimilation 



• An explosion of new sensors and data volume have 
occurred and will continue to occur in the near future 
 

• New technologies are allowing more measurements 
(new) to be made, more frequently, better 
 

• Overall, more nations are building and launching 
satellite-based Earth Observing sensors 
 

• Clearly  be we might be in the middle of a golden era 
of satellite-based earth observation sensors 

Major Trends in GSO 





“Big Data” Paradigm 



 
• Meteorology has faced massive data issues for some time 
• Supercomputers do not compensate for time constraints 
• Big data is good: robustness, anchoring via redundancy 
 
 

• Volume,  
• Velocity,  
• Variety, 
• Variability, 
• Complexity 

 
 

Source: Météo-France 

“Big Data” Paradigm 



Conclusion 

Source: Will McCarty (NASA/GMAO) 
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Questions? 
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